基于Redis和MySQL的架构,如何保证数据一致性?

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 基于Redis和MySQL的架构,如何保证数据一致性?

今天分享一道一线大厂公司高频面试题。“基于Redis和MySQL的架构,如何保证数据一致性”。这个问题难倒了不少工作5年以上的程序员,难的不是问题本身,而是解决这个问题的思路。

1

背景介绍

一般情况下,Redis是用作应用程序和数据库之间读操作的缓存,主要目的是减少数据库IO,还可以提升数据的IO性能。如图所示,这是Redis加MySQL的整体架构设计。


72784aae414df04fb65db6813695cd91.png


当应用程序需要去读取某个数据的时候,首先会先尝试去Redis中加载,如果命中就直接返回。如果没有命中,就从数据库查询,查询到数据后再把这个数据缓存到Redis里面。


在这样一个架构中,会出现一个问题,就是一份数据,同时保存在数据库和Redis中,当数据发生变化的时候,需要同时更新Redis和MySQL,由于更新是有先后顺序的,这这种两边写入的环境下,并不能像单纯数据库的操作一样,可以满足ACID特性。因此,就有可能出现一方更新失败,一方更新成功的情况,从而出现数据一致性问题。


bf24fff4e106f3d63451fb9623416483.png


2

解决思路

如果出现数据一致性问题,我们该如何解决呢?一般会想到以下两种解决思路。

要么先更新数据库,再更新缓存;

要么先删除缓存,再更新数据库。

如果是采用先更新数据库,再更新缓存的方案,也会有这样一个问题。假设缓存更新失败,就会导致数据库和Redis中的数据不一致。

d9b8901365176a723e2c9a8c34addfb8.png



那如果是先删除缓存,再更新数据库,理想情况是应用下次访问Redis的时候,发现Redis里面的数据是空的,就从数据库加载保存到Redis里面,那么数据是一致的。但是在极端情况下,并不能保证删除Redis和更新数据库这两个操作的原子性,所以这个过程如果有其他线程来访问,还是会存在数据不一致问题。


17e2a15ae7acebf76f853ea5854744fd.png


所以,如果需要在极端情况下仍然保证Redis和MySQL的数据一致性,就只能采用最终一致性方案。


8803e46af56783f67a45b78003bbf1a5.png


如图所示,比如基于RocketMQ的可靠性消息通信,来实现最终一致性。

30ec661d7e4f8cb252e21b7f4fb188ed.png



再比如,还可以直接通过Canal组件,来监控MySQL中Binlog的日志,把更新后的数据同步到Redis中。

因为这里是基于最终一致性来实现的,如果业务场景不能接受数据的短期不一致性,那就不能使用这个方案来做。

以上就是我对这个问题的理解。


3

总结

我们在面试的时候,面试官还可能会问各种没有场景化的纯粹的技术问题,比如说:“你这个最终一致性方案”还是会存在数据不一致的问题啊?那怎么解决?

先不用慌,技术是为业务服务的,所以不同的业务场景,对于技术的选择和方案的设计都是不同的,所以这个时候,可以反问面试官,具体的业务场景是什么?

大家一定要记住,某个技术方案不可能适用于所有的业务场景,只有最合适的方案,没有最优的方案。


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
7天前
|
NoSQL Java 关系型数据库
Liunx部署java项目Tomcat、Redis、Mysql教程
本文详细介绍了如何在 Linux 服务器上安装和配置 Tomcat、MySQL 和 Redis,并部署 Java 项目。通过这些步骤,您可以搭建一个高效稳定的 Java 应用运行环境。希望本文能为您在实际操作中提供有价值的参考。
60 26
|
1月前
|
消息中间件 存储 Cloud Native
云原生架构下的数据一致性挑战与应对策略####
本文探讨了在云原生环境中,面对微服务架构的广泛应用,数据一致性问题成为系统设计的核心挑战之一。通过分析云原生环境的特点,阐述了数据不一致性的常见场景及其对业务的影响,并深入讨论了解决这些问题的策略,包括采用分布式事务、事件驱动架构、补偿机制以及利用云平台提供的托管服务等。文章旨在为开发者提供一套系统性的解决方案框架,以应对在动态、分布式的云原生应用中保持数据一致性的复杂性。 ####
|
1月前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
16天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
33 8
|
1月前
|
SQL 存储 缓存
【赵渝强老师】MySQL的体系架构
本文介绍了MySQL的体系架构,包括Server层的7个主要组件(Connectors、Connection Pool、Management Service & Utilities、SQL Interface、Parser、Optimizer、Query Caches & Buffers)及其作用,以及存储引擎层的支持情况,重点介绍了InnoDB存储引擎。文中还提供了相关图片和视频讲解。
【赵渝强老师】MySQL的体系架构
|
13天前
|
SQL 存储 关系型数据库
MySQL进阶突击系列(01)一条简单SQL搞懂MySQL架构原理 | 含实用命令参数集
本文从MySQL的架构原理出发,详细介绍其SQL查询的全过程,涵盖客户端发起SQL查询、服务端SQL接口、解析器、优化器、存储引擎及日志数据等内容。同时提供了MySQL常用的管理命令参数集,帮助读者深入了解MySQL的技术细节和优化方法。
|
1月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
58 14
|
24天前
|
存储 NoSQL 关系型数据库
MySQL和Redis的区别
**MySQL和Redis的区别** MySQL和Redis都是流行的数据存储解决方案,但它们在设计、用途和特性上有显著区别。理解这些区别有助于选择合适的数据库来满足不同的应用需求。本文将详细介绍MySQL和Redis的区别,包括它们的架构、使用场景、性能和其他关键特性。 ### 一、基本概述 **MySQL**: MySQL是一个关系型数据库管理系统(RDBMS),使用结构化查询语言(SQL)进行数据管理。它支持事务、复杂查询和多种存储引擎,广泛应用于各种Web应用、企业系统和数据分析项目。 **Redis**: Redis是一个基于内存的键值数据库,通常被称为NoSQL数
49 4
|
25天前
|
消息中间件 监控 Cloud Native
云原生架构下的数据一致性挑战与解决方案####
在数字化转型加速的今天,云原生架构以其轻量级、弹性伸缩和高可用性成为企业IT架构的首选。然而,在享受其带来的灵活性的同时,数据一致性问题成为了不可忽视的挑战。本文探讨了云原生环境中数据一致性的复杂性,分析了导致数据不一致的根本原因,并提出了几种有效的解决策略,旨在为开发者和企业提供实践指南,确保在动态变化的云环境中保持数据的完整性和准确性。 ####
|
7天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
62 15