强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解

简介: 强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解

强化学习从基础到进阶-常见问题和面试必知必答[7]:深度确定性策略梯度DDPG算法、双延迟深度确定性策略梯度TD3算法详解

1.核心词汇

深度确定性策略梯度(deep deterministic policy gradient,DDPG):在连续控制领域经典的强化学习算法,是深度Q网络在处定性”表示其输出的是一个确定的动作,可以用于连续动作环境;“策略梯度”代表的是它用到的是策略网络,并且每步都会更新一次,其是一个单步更新的策略网络。其与深度Q网络都有目标网络和经验回放的技巧,在经验回放部分是一致的,在目标网络的更新上有些许不同。

2.常见问题汇总

2.1 请解释随机性策略和确定性策略,两者有什么区别?

(1)对于随机性策略 $\pi_\theta(a_t|s_t)$ ,我们输入某一个状态 $s$,采取某一个动作 $a$ 的可能性并不是百分之百的,而是有一个概率的,就好像抽奖一样,根据概率随机抽取一个动作。

(2)对于确定性策略 $\mu_{\theta}(s_t)$ ,其没有概率的影响。当神经网络的参数固定之后,输入同样的状态,必然输出同样的动作,这就是确定性策略。

2.2 对于连续动作的控制空间和离散动作的控制空间,如果我们都采取策略网络,应该分别如何操作?

首先需要说明的是,对于连续动作的控制空间,Q学习、深度Q网络等算法是没有办法处理的,所以我们需要使用神经网络进行处理,因为其可以既输出概率值,也可以输出确定的策略 $\mu_{\theta}(s_t)$ 。

(1)要输出离散动作,最后输出的激活函数使用 Softmax 即可。其可以保证输出的是动作概率,而且所有的动作概率加和为1。

(2)要输出连续的动作,可以在输出层中加一层tanh激活函数,其可以把输出限制到 $[-1,1]$ 。我们得到这个输出后,就可以根据实际动作的一个范围再做缩放,然后将其输出给环境。比如神经网络输出一个浮点数2.8,经过tanh激活函数之后,它就可以被限制在 $[-1,1]$ ,输出0.99。假设小车的速度的动作范围是 $[-2,2]$ ,那我们就按比例将之从 $[-1,1]$ 扩大到 $[-2,2]$ ,0.99乘2,最终输出的就是1.98,将其作为小车的速度或者推小车的力输出给环境。

3.面试必知必答

3.1 友善的面试官:请简述一下深度确定性策略梯度算法。

深度确定性策略梯度算法使用演员-评论员结构,但是输出的不是动作的概率,而是具体动作,其可以用于连续动作的预测。优化的目的是将深度Q网络扩展到连续的动作空间。另外,其含义如其名:

(1)深度是因为用了深度神经网络;

(2)确定性表示其输出的是一个确定的动作,可以用于连续动作的环境;

(3)策略梯度代表的是它用到的是策略网络。强化算法每个回合就会更新一次网络,但是深度确定性策略梯度算法每个步骤都会更新一次策略网络,它是一个单步更新的策略网络。

3.2 友善的面试官:请问深度确定性策略梯度算法是同策略算法还是异策略算法?请说明具体原因并分析。

异策略算法。(1)深度确定性策略梯度算法是优化的深度Q网络,其使用了经验回放,所以为异策略算法。(2)因为深度确定性策略梯度算法为了保证一定的探索,对输出动作加了一定的噪声,行为策略不再是优化的策略。

3.3友善的面试官:你是否了解过分布的分布式深度确定性策略梯度算法(distributed distributional deep deterministic policy gradient,D4PG)呢?请描述一下吧。

分布的分布式深度确定性策略梯度算法(distributed distributional deep deterministic policy gradient,D4PG),相对于深度确定性策略梯度算法,其优化部分如下。

(1)分布式评论员:不再只估计Q值的期望值,而是估计期望Q值的分布,即将期望Q值作为一个随机变量来估计。

(2)$N$步累计回报:计算时序差分误差时,D4PG计算的是$N$步的时序差分目标值而不仅仅只有一步,这样就可以考虑未来更多步骤的回报。

(3)多个分布式并行演员:D4PG使用$K$个独立的演员并行收集训练数据并存储到同一个回放缓冲区中。

(4)优先经验回放(prioritized experience replay,PER):使用一个非均匀概率从回放缓冲区中进行数据采样。

更多优质内容请关注公号:汀丶人工智能

相关文章
|
3月前
|
机器学习/深度学习 算法 机器人
多代理强化学习综述:原理、算法与挑战
多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。每个代理都受其个体奖励驱动,采取行动以推进自身利益;在某些环境中,这些利益可能与其他代理的利益相冲突,从而产生复杂的群体动态。
292 5
|
17天前
|
机器学习/深度学习 算法
强化学习之父Richard Sutton给出一个简单思路,大幅增强所有RL算法
Richard Sutton领导的团队提出了一种称为“奖励中心化”的方法,通过从观察到的奖励中减去其经验平均值,使奖励更加集中,显著提高了强化学习算法的性能。该方法在解决持续性问题时表现出色,尤其是在折扣因子接近1的情况下。论文地址:https://arxiv.org/pdf/2405.09999
55 15
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
3月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
98 2
|
5月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
78 1
|
5月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
62 0
|
5月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
2月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
|
2月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?

热门文章

最新文章