绘制不同学习率对精度损失的影响图形出现错误

简介: 绘制不同学习率对精度损失的影响图形出现错误

问题

当在进行实验不同的lr如[0.1,0.01,0.001,0.0001]时,用matplotlib绘制图形,去除列表中上一个lr的数据时出现问题。

方法

使用python库matplotlib时,当使用for循环画图时,后续的图片会在前一张图的基础上绘画。这是因为matplotlib会记录之前绘图的数据。


plt.show()函数能够重新开启下一次绘图,而不使图片数据重叠。但是,该函数会阻塞程序的进程。plt.show()函数会调用xmanager开启一个窗口,必须关闭该窗口才能进行程序的下一次运算,十分繁琐。解决该问题的方式为:在程序末尾加上函数:plt.clf(),同时删除plt.show()。


结语

果然在画图末尾添加clf就能将这些数据清空,通过本次实验我认识到了这个列表中添加、增改的小技巧,matplotlib画图的一些基础知识,更好地完成一些基础简单的任务。

目录
相关文章
|
6月前
|
编解码 并行计算 算法
除了NMS参数,还有哪些因素会影响YOLOv3模型的检测性能?
除了NMS参数,还有哪些因素会影响YOLOv3模型的检测性能?
|
7天前
|
机器学习/深度学习 存储 人工智能
梯度累积的隐藏陷阱:Transformer库中梯度累积机制的缺陷与修正
在本地微调大规模语言模型时,由于GPU显存限制,通常采用梯度累积技术来模拟大批次训练。然而,实际研究表明,梯度累积方法在主流深度学习框架中会导致模型性能显著下降,尤其是在多GPU环境中。本文详细探讨了梯度累积的基本原理、应用场景及存在的问题,并通过实验验证了修正方案的有效性。研究指出,该问题可能在过去多年中一直存在且未被发现,影响了模型的训练效果。
27 4
梯度累积的隐藏陷阱:Transformer库中梯度累积机制的缺陷与修正
|
2月前
|
机器学习/深度学习 数据可视化 数据建模
使用ClassificationThresholdTuner进行二元和多类分类问题阈值调整,提高模型性能增强结果可解释性
在分类问题中,调整决策的概率阈值虽常被忽视,却是提升模型质量的有效步骤。本文深入探讨了阈值调整机制,尤其关注多类分类问题,并介绍了一个名为 ClassificationThresholdTuner 的开源工具,该工具自动化阈值调整和解释过程。通过可视化功能,数据科学家可以更好地理解最优阈值及其影响,尤其是在平衡假阳性和假阴性时。此外,工具支持多类分类,解决了传统方法中的不足。
36 2
使用ClassificationThresholdTuner进行二元和多类分类问题阈值调整,提高模型性能增强结果可解释性
|
6月前
|
算法 计算机视觉
YOLOv3 的非极大值抑制(NMS)算法是如何工作的,它对最终检测结果有何影响?
YOLOv3 的非极大值抑制(NMS)算法是如何工作的,它对最终检测结果有何影响?
|
5月前
偏微分方程有了基础模型:样本需求数量级减少,14项任务表现最佳
【6月更文挑战第16天】研究人员提出Poseidon模型,减少求解偏微分方程(PDEs)的样本需求,提升效率。在15个挑战任务中,该模型在14项表现最优。基于scOT的多尺度架构, Poseidon降低了计算成本,但仍有泛化和资源限制。[论文链接](https://arxiv.org/pdf/2405.19101)**
88 4
|
6月前
|
数据可视化 算法 数据挖掘
用有限混合模型(FMM,FINITE MIXTURE MODEL)创建衰退指标对股市SPY、ETF收益聚类双坐标图可视化
用有限混合模型(FMM,FINITE MIXTURE MODEL)创建衰退指标对股市SPY、ETF收益聚类双坐标图可视化
|
6月前
|
机器学习/深度学习 运维 算法
R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值
R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值
|
6月前
|
数据可视化
R语言时变面板平滑转换回归模型TV-PSTR分析债务水平对投资的影响
R语言时变面板平滑转换回归模型TV-PSTR分析债务水平对投资的影响
|
6月前
R语言向量误差修正模型 (VECMs)分析长期利率和通胀率影响关系
R语言向量误差修正模型 (VECMs)分析长期利率和通胀率影响关系
|
6月前
|
Windows
R语言有状态依赖强度的非线性、多变量跳跃扩散过程模型似然推断分析股票价格波动
R语言有状态依赖强度的非线性、多变量跳跃扩散过程模型似然推断分析股票价格波动