卷积网络和全连接网络的比较分析

简介: 卷积网络和全连接网络的比较分析

1 问题

我们在深度学习的过程中,开始对模型进行在测试集的精度进行预测时,最开始是全连接网络进行模型的精度预测,最后发现测试集的精度预测值不是很理想,就在想能不能换一种网络层提高测试集的精度?


2 方法

在后续的学习中,我们学习和了解了卷积网络,卷积神经网络也是通过一层一层的节点组织起来的。和全连接神经网络一样,卷积神经网络中的每一个节点就是一个神经元。在全连接神经网络中,每相邻两层之间的节点都有边相连,于是会将每一层的全连接层中的节点组织成一列,这样方便显示连接结构。而对于卷积神经网络,相邻两层之间只有部分节点相连,为了展示每一层神经元的维度,一般会将每一层卷积层的节点组织成一个三维矩阵。

全连接层的参数太多,对于MNIST数据,每一张图片的大小是28*28*1,其中28*28代表的是图片的大小,*1表示图像是黑白的,有一个色彩通道。有的图片会更大或者是彩色的图片,这时候参数将会更多。参数增多除了导致计算速度减慢,还很容易导致过拟合的问题。所以需要一个合理的神经网络结构来有效的减少神经网络中参数的个数。卷积神经网络就可以更好的达到这个目的。于是我们就用卷积神经网络替代了全连接神经网络进行测试,发现确实提高了测试集的精度。

这是全连接网络的网络层

这是卷积网络的网络层:

最后我们训练了五十个周期,得出对比:

这是卷积网络测试集的精度

这是全连接网络测试集的精度

3 结语

我们通过训练发现卷积网络确实提高了网络测试集的精度,而从中也发现了卷积神经网络的输入输出以及训练的流程和全连接神经网络基本一致,而他们两种网络唯一区别就是神经网络相邻两层的连接方式。

目录
相关文章
|
14天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
72 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
287 55
|
26天前
|
存储 安全 物联网
浅析Kismet:无线网络监测与分析工具
Kismet是一款开源的无线网络监测和入侵检测系统(IDS),支持Wi-Fi、Bluetooth、ZigBee等协议,具备被动监听、实时数据分析、地理定位等功能。广泛应用于安全审计、网络优化和频谱管理。本文介绍其安装配置、基本操作及高级应用技巧,帮助用户掌握这一强大的无线网络安全工具。
61 9
浅析Kismet:无线网络监测与分析工具
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
190 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
11天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
1月前
|
负载均衡 网络协议 算法
不为人知的网络编程(十九):能Ping通,TCP就一定能连接和通信吗?
这网络层就像搭积木一样,上层协议都是基于下层协议搭出来的。不管是ping(用了ICMP协议)还是tcp本质上都是基于网络层IP协议的数据包,而到了物理层,都是二进制01串,都走网卡发出去了。 如果网络环境没发生变化,目的地又一样,那按道理说他们走的网络路径应该是一样的,什么情况下会不同呢? 我们就从路由这个话题聊起吧。
65 4
不为人知的网络编程(十九):能Ping通,TCP就一定能连接和通信吗?
|
29天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
113 13
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
124 3
图卷积网络入门:数学基础与架构设计
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)