【Java设计模式 经典设计原则】三 SOLID-LSP里式替换原则

简介: 【Java设计模式 经典设计原则】三 SOLID-LSP里式替换原则

首先,不要误解这里的LSP哈,里式替换原则:Liskov Substitution Principle,缩写为 LSP。

理解里式替换原则

里式替换原则用中文描述出来,是这样的:子类对象(object of subtype/derived class)能够替换程序(program)中父类对象(object of base/parent class)出现的任何地方,并且保证原来程序的逻辑行为(behavior)不变及正确性不被破坏

这里的要求可不仅仅是功能一致,异常逻辑也需要一致才可以。举个例子:父类 Transporter 使用 org.apache.http 库中的 HttpClient 类来传输网络数据。子类 SecurityTransporter 继承父类 Transporter,增加了额外的功能,支持传输 appId 和 appToken 安全认证信息

父类Transporter

public class Transporter {
  private HttpClient httpClient;
  public Transporter(HttpClient httpClient) {
    this.httpClient = httpClient;
  }
  public Response sendRequest(Request request) {
    // ...use httpClient to send request
  }
}

子类SecurityTransporter

public class SecurityTransporter extends Transporter {
  private String appId;
  private String appToken;
  public SecurityTransporter(HttpClient httpClient, String appId, String appToken) {
    super(httpClient);
    this.appId = appId;
    this.appToken = appToken;
  }
  @Override
  public Response sendRequest(Request request) {
    if (StringUtils.isNotBlank(appId) && StringUtils.isNotBlank(appToken)) {
      request.addPayload("app-id", appId);
      request.addPayload("app-token", appToken);
    }
    return super.sendRequest(request);
  }
}

父子类的使用

public class Demo {    
  public void demoFunction(Transporter transporter) {    
    Reuqest request = new Request();
    //...省略设置request中数据值的代码...
    Response response = transporter.sendRequest(request);
    //...省略其他逻辑...
  }
}
// 里式替换原则
Demo demo = new Demo();
demo.demofunction(new SecurityTransporter(/*省略参数*/););

目前看起来是符合LSP的,但是只要稍微改动一下实现就可以破坏LSP:

// 改造前:
public class SecurityTransporter extends Transporter {
  //...省略其他代码..
  @Override
  public Response sendRequest(Request request) {
    if (StringUtils.isNotBlank(appId) && StringUtils.isNotBlank(appToken)) {
      request.addPayload("app-id", appId);
      request.addPayload("app-token", appToken);
    }
    return super.sendRequest(request);
  }
}
// 改造后:
public class SecurityTransporter extends Transporter {
  //...省略其他代码..
  @Override
  public Response sendRequest(Request request) {
    if (StringUtils.isBlank(appId) || StringUtils.isBlank(appToken)) {
      throw new NoAuthorizationRuntimeException(...);
    }
    request.addPayload("app-id", appId);
    request.addPayload("app-token", appToken);
    return super.sendRequest(request);
  }
}

在改造之后的代码中,如果传递进 demoFunction() 函数的是父类 Transporter 对象,那 demoFunction() 函数并不会有异常抛出,但如果传递给 demoFunction() 函数的是子类 SecurityTransporter 对象,那 demoFunction() 有可能会有异常抛出。尽管代码中抛出的是运行时异常(Runtime Exception),我们可以不在代码中显式地捕获处理,但子类替换父类传递进 demoFunction 函数之后,整个程序的逻辑行为有了改变。这样就违反了LSP

违背LSP的例子

进一步理解LSP:子类在设计的时候,要遵守父类的行为约定(或者叫协议)。父类定义了函数的行为约定,那子类可以改变函数的内部实现逻辑,但不能改变函数原有的行为约定。这里的行为约定包括:函数声明要实现的功能;对输入、输出、异常的约定;甚至包括注释中所罗列的任何特殊说明。实际上,定义中父类和子类之间的关系,也可以替换成接口和实现类之间的关系 ,基于这样的理解我们来看看有哪些违背LSP的例子:

1 子类违背父类声明要实现的功能

父类中提供的sortOrdersByAmount()订单排序函数,是按照金额从小到大来给订单排序的,而子类重写这个方法之后是按照创建日期来给订单排序的。那子类的设计就违背里氏替换原则。

2 子类违背父类对输入、输出、异常的约定

父类中某个函数约定:运行出错返回null;获取数据为空时返回空集合。子类重写函数之后,运行出错返回异常,获取不到数据返回null。那子类的设计就违背里氏替换原则。

父类中某个函数约定,输入数据可以是任意整数,子类实现只允许输入数据是正整数,负数就抛出,也就是说子类对输入的数据的校验比父类更加严格,那子类的设计就违背了里氏替换原则。

父类中某个函数约定,只会抛出ArgumentNullException异常,子类的设计实现抛出了其他的异常,那子类的设计就违背了里氏替换原则。

3 子类违背父类注释中所罗列的任何特殊说明

父类中定义的 withdraw() 提现函数的注释是这么写的:“用户的提现金额不得超过账户余额……”,而子类重写 withdraw() 函数之后,针对 VIP 账号实现了透支提现的功能,也就是提现金额可以大于账户余额,那这个子类的设计也是不符合里式替换原则的。

4 子类不能通过父类的单元测试

判断子类的设计实现是否违背里氏替换原则,我们可以拿父类的单元测试去验证子类的代码。如果某些单元测试运行事呗,就有可能说明子类的设计实现没有完全遵守父类的约定,子类就有可能违背了里氏替换原则。

多态和里氏替换原则的区别

多态是面向对象编程的一大特性,也是面向对象编程语言的一种语法。它是一种代码实现的思路。而里式替换是一种设计原则,用来指导继承关系中子类该如何设计,子类的设计要保证在替换父类的时候,不改变原有程序的逻辑及不破坏原有程序的正确性。也就是说LSP基于多态,又可以反过来指导多态的设计。LSP的指导,可以在无副作用的情况下有如下优势

  • 改进已有实现。例如程序最开始实现时采用了低效的排序算法,改进时使用LSP实现更高效的排序算法。
  • 指导程序开发。告诉我们如何组织类和子类(subtype),子类的方法(非私有方法)要符合contract。
  • 改进抽象设计。如果一个子类中的实现违反了LSP,那么是不是考虑抽象或者设计出了问题。

例如一些通用框架的版本升级能保证正确的向后兼容。

总结一下

LSP乍一看对子类的实现限制有点儿死,但这样的好处是让父子类的继承关系更加健壮,相同方法子类能对父类功能做增强但又不会因此而带来预期外的结果或副作用。例如1.0版本的Sort接口基于LSP的实现为冒泡排序,2.0版本基于LSP增加了快速排序,这个时候用快速排序替换冒泡排序增强了排序效果,但又不脱离Sort的功能范围,不影响Sort的正常逻辑。

相关文章
|
28天前
|
设计模式 算法 Java
Java中的设计模式:提升代码质量的秘诀
【8月更文挑战第23天】在Java开发中,设计模式是提高代码可读性、可维护性和扩展性的强有力工具。本文通过浅显易懂的语言和实际案例,探讨几种常见的设计模式及其在Java中的应用,旨在帮助开发者更好地理解并运用这些模式来优化自己的代码结构。
39 2
|
6天前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑汇总】Java基础+JavaWeb+SSM+SpringBoot+SpringCloud+瑞吉外卖/谷粒商城/学成在线+设计模式+面试题汇总+性能调优/架构设计+源码解析
本文是“Java学习路线”专栏的导航文章,目标是为Java初学者和初中高级工程师提供一套完整的Java学习路线。
|
2天前
|
设计模式 Java
Java设计模式:组合模式的介绍及代码演示
组合模式是一种结构型设计模式,用于将多个对象组织成树形结构,并统一处理所有对象。例如,统计公司总人数时,可先统计各部门人数再求和。该模式包括一个通用接口、表示节点的类及其实现类。通过树形结构和节点的通用方法,组合模式使程序更易扩展和维护。
Java设计模式:组合模式的介绍及代码演示
|
6天前
|
设计模式 安全 算法
【Java面试题汇总】设计模式篇(2023版)
谈谈你对设计模式的理解、七大原则、单例模式、工厂模式、代理模式、模板模式、观察者模式、JDK中用到的设计模式、Spring中用到的设计模式
【Java面试题汇总】设计模式篇(2023版)
|
6天前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑】设计模式——原型模式
对比原型模式和传统方式的实现思路、代码方案、优缺点,阐述原型模式的使用场景,以及深拷贝、浅拷贝等相关概念,并扩展原型模式在Spring源码中的应用。
【Java笔记+踩坑】设计模式——原型模式
|
6天前
|
设计模式 Java 关系型数据库
设计模式——设计模式简介和七大原则
设计模式的目的和核心原则、单一职责原则、接口隔离原则、依赖倒转原则、里氏替换原则、开闭原则、迪米特法则、合成复用原则
设计模式——设计模式简介和七大原则
|
21天前
|
设计模式 缓存 算法
揭秘策略模式:如何用Java设计模式轻松切换算法?
【8月更文挑战第30天】设计模式是解决软件开发中特定问题的可重用方案。其中,策略模式是一种常用的行为型模式,允许在运行时选择算法行为。它通过定义一系列可互换的算法来封装具体的实现,使算法的变化与客户端分离。例如,在电商系统中,可以通过定义 `DiscountStrategy` 接口和多种折扣策略类(如 `FidelityDiscount`、`BulkDiscount` 和 `NoDiscount`),在运行时动态切换不同的折扣逻辑。这样,`ShoppingCart` 类无需关心具体折扣计算细节,只需设置不同的策略即可实现灵活的价格计算,符合开闭原则并提高代码的可维护性和扩展性。
37 2
|
21天前
|
设计模式 Java
Java 设计模式之谜:工厂模式与抽象工厂模式究竟隐藏着怎样的神奇力量?
【8月更文挑战第30天】在Java编程中,设计模式为常见问题提供了高效解决方案。工厂模式与抽象工厂模式是常用的对象创建型设计模式,能显著提升代码的灵活性、可维护性和可扩展性。工厂模式通过定义创建对象的接口让子类决定实例化哪个类;而抽象工厂模式则进一步提供了一个创建一系列相关或相互依赖对象的接口,无需指定具体类。这种方式使得系统更易于扩展和维护。
30 1
|
21天前
|
设计模式 Java
重构你的代码:探索Java中的混合、装饰器与组合设计模式
【8月更文挑战第30天】在软件开发中,设计模式为特定问题提供了结构化的解决方案,使代码更易理解、维护及扩展。本文将介绍三种常用的 Java 设计模式:混合模式、装饰器模式与组合模式,并附有示例代码展示实际应用。混合模式允许通过继承多个接口或抽象类实现多重继承;装饰器模式可在不改变对象结构的情况下动态添加新功能;组合模式则通过树形结构表示部分-整体层次,确保客户端处理单个对象与组合对象时具有一致性。
15 1
|
27天前
|
设计模式 缓存 算法
探索 Java 设计模式及其重要性
【8月更文挑战第24天】
49 0