1122 Hamiltonian Cycle
The “Hamilton cycle problem” is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a “Hamiltonian cycle”.
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:n V1 V2 … Vn
where n is the number of vertices in the list, and Vi’s are the vertices on a path.
Output Specification:
For each query, print in a line YES
if the path does form a Hamiltonian cycle, or NO
if not.
Sample Input:
6 10 6 2 3 4 1 5 2 5 3 1 4 1 1 6 6 3 1 2 4 5 6 7 5 1 4 3 6 2 5 6 5 1 4 3 6 2 9 6 2 1 6 3 4 5 2 6 4 1 2 5 1 7 6 1 3 4 5 2 6 7 6 1 2 5 4 3 1
Sample Output:
YES NO NO NO YES NO
题意
哈密顿回路问题是找到一个包含图中每个顶点的简单回路。
这样的回路称为“哈密顿回路”。
在本题中,你需要做的是判断给定路径是否为哈密顿回路。
思路
用邻接矩阵来存储每个结点之间是否存在一条边,如果存在则置为 true 。
判断给定的路径是否为哈密顿回路。
先判断首尾结点是否相同,并且给定路径结点数是否为 n+1 个点,因为首尾结点相同,所以会多出一个点。
然后判断该路径中每条边是否存在,并用 st 来存储出现过的结点。
最后再判断所有结点是否都出现过。
根据判断的结果输出最终答案。
代码
#include<bits/stdc++.h> using namespace std; const int N = 210; int n, m; bool g[N][N], st[N]; int nodes[N * 2]; bool check(int cnt) { //首尾结点必须相同,并且一共要有n个结点 if (nodes[0] != nodes[cnt - 1] || cnt != n + 1) return false; //先判断每条边是否存在 memset(st, false, sizeof st); for (int i = 0; i < cnt - 1; i++) { st[nodes[i]] = true; if (!g[nodes[i]][nodes[i + 1]]) return false; } //再判断是否有结点没有包含在内 for (int i = 1; i <= n; i++) if (!st[i]) return false; return true; } int main() { cin >> n >> m; //输入边的信息 for (int i = 0; i < m; i++) { int a, b; cin >> a >> b; g[a][b] = g[b][a] = true; } int k; cin >> k; while (k--) //判断是否为哈密顿回路 { int cnt; cin >> cnt; for (int i = 0; i < cnt; i++) cin >> nodes[i]; if (check(cnt)) cout << "YES" << endl; else cout << "NO" << endl; } return 0; }