LabVIEW控制Arduino实现超声波测距(进阶篇—5)

简介: 超声波测距是一种传统而实用的非接触测量方法,与激光、涡流和无线电测距方法相比,具有不受外界光及电磁场等因素影响的优点,在比较恶劣的环境中也具有一定的适应能力,且结构简单、成本低,因此在工业控制、建筑测量、机器人定位方面有广泛的应用。

1、项目概述

超声波测距是一种传统而实用的非接触测量方法,与激光、涡流和无线电测距方法相比,具有不受外界光及电磁场等因素影响的优点,在比较恶劣的环境中也具有一定的适应能力,且结构简单、成本低,因此在工业控制、建筑测量、机器人定位方面有广泛的应用。


本节将介绍使用HC-SR04超声波传感器、DS18B20数字温度传感器、Arduino Uno和LabVIEW组成带有温度补偿的超声波测距系统,可用于机器人避障等场合的距离测量。


超声波测距的原理:从超声波发射器发出的超声波(假设传播介质为气体),经气体介质的传播,遇到障碍物之后反射的超声波被超声波接收器所接收。将超声波发射与接收之间的时间与气体介质中的声速相乘,就是声波传输的距离,声波传输距离的一半便是所测距离。


拓展学习:LabVIEW控制Arduino采集多路DS18B20温度数值(进阶篇—3)

https://blog.csdn.net/m0_38106923/article/details/125134871?spm=1001.2014.3001.5501


2、项目架构

超声波测距系统总体框图如下图所示:


840b4bb80d68423f86afd96e6f5735da.png


在整个系统中,Arduino Uno作为下位机,负责读写HC-SR04超声波传感器、读取DS18B20温度传感器以及上传数据,LabVIEW软件作为上位机,负责接收超声波时间、空气温度和计算超声波所测量的距离值并显示,上下位机利用USB-TTL接口实现通信。


项目详情请参见:LabVIEW控制Arduino实现超声波测距-单片机文档类资源

https://download.csdn.net/download/m0_38106923/85569134


3、硬件环境

本项目将HC-SR04超声波模块的VCC、GND、Trig、Echo分别连接到ACCrduinoUno控制板的+5V、GND、数字端口D2和D3上。然后,将DS18B20温度传感器VCC、GND、DQ分别连接至Arduino Uno控制板的3.3V、GND和数字端口D4上,且在DQ与3.3V之间连接一个1KΩ的上拉电阻。超声波测距系统硬件连接示意图如下图所示:


dca4ab8c29d94e28917bc332879d8f18.png


4、Arduino功能设计

在基于Arduino与LabVIEW的上下位机超声波测距系统中,Arduino Uno控制板需要完成以下功能:接收和判断命令、采集和传输温度与超声波往返时间。Arduino Uno控制板通过串口接收上位机发来的命令,分析得到有效命令,读取DS18B20数字温度传感器,将气温数据上传给LabVIEW软件或控制超声波传感器发射超声波,并测量出超声波往返的时间,将超声波往返的时间上传至LabVIEW软件。


Arduino Uno控制器负责读取LabVIEW上位机发来的距离测量和温度采集命令,并通过HC-SR04超声波传感器和DS18B20传感器获取超声波往返时间和温度数据,通过串口发送回上位机LabVIEW软件。Arduino Uno控制器的程序代码如下所示:


#include <OneWire.h>
#include <DallasTemperature.h>
// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2
// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);
// Pass our oneWire reference to Dallas Temperature. 
DallasTemperature sensors(&oneWire);
byte comdata[3]={0};      //定义数组数据,存放串口命令数据
int LED = 13;                 //定义LED连接的管脚
const int TrigPin = 2;
const int EchoPin = 3;
float distance;
void receive_data(void);      //接受串口数据
void test_do_data(void);         //测试串口数据是否正确,并更新数据
void setup()
{
  Serial.begin(9600);      
  pinMode(LED, OUTPUT);
  // Start up the library
  sensors.begin();
}
void loop()
{
  while (Serial.available() > 0)   //不断检测串口是否有数据
   {
        receive_data();            //接受串口数据
        test_do_data();               //测试数据是否正确并更新数据
   }
}
void distance_time(void)
{
  digitalWrite(TrigPin, LOW);
  delayMicroseconds(2);
  digitalWrite(TrigPin, HIGH);//发送10μS的高电平触发信号
  delayMicroseconds(10);
  digitalWrite(TrigPin, LOW);
  distance = pulseIn(EchoPin, HIGH); // 检测脉冲宽度,即为超声波往返时间
}
void receive_data(void)       
{
   int i ;
   for(i=0;i<3;i++)
   {
      comdata[i] =Serial.read();
      //延时一会,让串口缓存准备好下一个字节,不延时可能会导致数据丢失,
       delay(2);
   }
}
void test_do_data(void)
{
  if(comdata[0] == 0x55)            //0x55和0xAA均为判断是否为有效命令
   {
     if(comdata[1] == 0xAA)
     {
          switch (comdata[2])
          {
            case 0x01: 
            sensors.requestTemperatures(); // Send the command to get temperatures
            Serial.print(sensors.getTempCByIndex(0));  
            break;
            case 0x02:  
            distance_time();
            Serial.print(distance) ;  
            break ;
          }
      }
   }
}


5、LabVIEW功能设计

LabVIEW上位机部分需要完成以下功能:


1、向下位机Arduino控制器发送采集温度的命令,Arduino控制器通过串口接收上位机命令,完成温度的采集之后并将数据回传,LabVIEW软件将回传的温度数据显示在前面板上。


2、向下位机Arduino控制器发送测量距离的命令,Arduino控制器通过串口接收上位机命令,完成距离的测量之后并将超声波往返时回传,LabVIEW软件将回传的超声波往返时间、温度与音速公式:u=331.3+(0.606 x t)m/s (t为摄氏温度)计算得到所测量的距离,显示在前面板上。


3、当处于自动测温模式时,且LabVIEW软件超时1秒时,向下位机Arduino控制器发送采集温度的命令,并将回传的温度数据显示在前面板上,实时更新温度,以保证测距尽可能精确。


5.1、前面板设计

LabVIEW上位机前面板主要有当前温度值和测量距离的显示表盘,以及自动测量选框和手动测温的按钮,如下图所示:


dbae1f71115444938a77fcbb9e140f94.png


5.2、程序框图设计

LabVIEW程序首先通过选择的Arduino Uno控制器的串口号来初始化串口通信,然后进入内嵌事件结构的While循环中,当"温度测量"按钮被按下时,则向Arduino Uno控制器发送温度测量的命令码,等待1秒之后读取Arduino Uno控制器返回的温度数据并显示出来。


当“距离测量"按钮被按下时,则向Arduino Uno控制器发送距离测量的命令码,等待1秒之后读取Arduino Uno控制器返回的超声波往返时间,并通过温度与音速公式u=331.3+(0.606 x t) m/s (t为摄氏温度),计算得到所测量的距离数据显示出来。


当“温度测量"和“距离测量"按钮在1秒内都没被按下时,LabVIEW程序进入“超时”",且当自动测量选项被使能后,则向Arduino Uno控制器发送温度测量的命令码,等待1秒之后读取Arduino Uno控制器返回的温度数据并显示出来,以实时更新当前的温度。最后关闭串口通信。


LabVIEW上位机软件中的“温度测量”、“距离测量"和“超时"的程序框图如下所示:

8fa1a507979340fca41594796d4fe981.png

23217efdac0b402e96567284dc8d4e88.png

a12cdaecbf6c413ba5b9085f6375d0e2.png



项目详情请参见:LabVIEW控制Arduino实现超声波测距-单片机文档类资源

https://download.csdn.net/download/m0_38106923/85569134


相关文章
|
搜索推荐 定位技术 数据库
项目性能参数和概念QPS&TPS
项目性能参数和概念QPS&TPS
261 0
|
存储 数据采集 XML
再谈主数据管理|一文读懂主数据项目实施
主数据管理是企业改善其关键数据资产(如产品数据,资产数据,客户数据,位置数据等)的一致性和质量的必要数据管理活动。
|
6月前
|
缓存 编解码 数据安全/隐私保护
Harmony OS Next《ArkUI全组件终极指南 | 从布局到交互一站式精通》
本文全面解析HarmonyOS的ArkUI五大核心组件(布局容器、图片处理、文本、输入交互和按钮),通过零基础友好的分步讲解与实战场景覆盖,助你轻松打造美观且功能强大的应用。涵盖样式定制、性能优化及常见问题解决,适合教育科普行业学习参考。无论是初学者还是进阶开发者,都能从中掌握高效开发技巧,提升应用设计水平。
467 11
|
机器学习/深度学习 人工智能 搜索推荐
AI实践应用
AI实践横跨网络安全、软件测试、深度学习、生物识别、日常生活、计算机网络及更多领域。例如,AI用于防御网络攻击、自动化测试、家务机器人、人脸识别、文本编辑、搜索引擎优化、聊天机器人、智能医疗、工业4.0和金融风控。随着技术进步,AI持续推动各行业的数字化与智能化变革。
401 2
|
12月前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
数据采集 Web App开发 测试技术
使用Selenium与WebDriver实现跨浏览器自动化数据抓取
在网络爬虫领域,Selenium与WebDriver是实现跨浏览器自动化数据抓取的利器。本文详细介绍了如何利用Selenium和WebDriver结合代理IP技术提升数据抓取的稳定性和效率。通过设置user-agent和cookie来模拟真实用户行为,避免被网站检测和阻止。文章提供了具体的代码示例,展示了如何配置代理IP、设置user-agent和cookie,并实现了跨浏览器的数据抓取。合理的参数配置能有效减少爬虫被封禁的风险,提高数据抓取效率。
1202 6
使用Selenium与WebDriver实现跨浏览器自动化数据抓取
|
12月前
|
弹性计算 异构计算
2024年阿里云GPU服务器多少钱1小时?亲测价格查询方法
2024年阿里云GPU服务器每小时收费因实例规格不同而异。可通过阿里云GPU服务器页面选择“按量付费”查看具体价格。例如,NVIDIA A100的gn7e实例为34.742元/小时,NVIDIA A10的gn7i实例为12.710156元/小时。更多详情请访问阿里云官网。
1891 2
|
语音技术
esp32+1.3寸屏幕语音交互
esp32+1.3寸屏幕语音交互
444 0
esp32+1.3寸屏幕语音交互
|
关系型数据库 MySQL 开发工具
docker如何修改容器的配置文件
docker如何修改容器的配置文件
458 0
|
机器学习/深度学习 人工智能 运维
博睿数据与阿里云签订云原生核心合作伙伴计划,推动企业智能运维落地
博睿数据是阿里云云原生核心合作伙伴,未来,阿里云将与更多合作伙伴一起,发挥生态优势,为客户在云原生时代的资源弹性、系统稳定、应用敏捷、业务智能、安全可信创造更大的价值。
14817 98
博睿数据与阿里云签订云原生核心合作伙伴计划,推动企业智能运维落地