【C++】类和对象(二)

简介: 【C++】类和对象(二)

生活的全部意义在于无穷地探索尚未知道的东西,在于不断地增加更多的知识。    ——左拉

目录


类的6个默认成员函数


构造函数


概念


特性


析构函数


概念


特性


拷贝构造函数


概念


特征


赋值运算符重载


运算符重载


赋值运算符重载


前置++和后置++的运算符重载


const成员函数


取地址及const取地址操作符重载


日期类代码:


Date.h:


Date.cpp:


text.cpp:


类的6个默认成员函数

如果一个类中什么成员都没有,简称为空类。

空类中真的什么都没有吗?并不是,任何类在什么都不写时,编译器会自动生成以下6个默认成员 \函数。

默认成员函数:用户没有显式实现,编译器会生成的成员函数称为默认成员函数。

class Date {};

8e5ae88cc17f9812d5cba08936174351_2bdb7085d5f54a76b8dca9ca325bcffc.png

默认成员函数, 我们如果不写,编译器就会自动生成一个,但是如果我们实现了任意一个成员函数,编译器就不会生成

构造函数

概念

构造函数是一个特殊的成员函数,名字与类名相同,创建类类型对象时由编译器自动调用,以保证 每个数据成员都有 一个合适的初始值,并且在对象整个生命周期内只调用一次。

特性

构造函数是特殊的成员函数,需要注意的是,构造函数虽然名称叫构造,但是构造函数的主要任 务并不是开空间创建对象,而是初始化对象。


其特征如下:


1. 函数名与类名相同。


2. 无返回值。


3. 对象实例化时编译器自动调用对应的构造函数。


4. 构造函数可以重载。


5. 如果类中没有显式定义构造函数,则C++编译器会自动生成一个无参的默认构造函数,一旦 用户显式定义编译器将不再生成。

class Date
 {
  public:
      // 1.无参构造函数
      Date()
     {}
      // 2.带参构造函数
      Date(int year, int month, int day)
     {
          _year = year;
          _month = month;
          _day = day;
     }
  private:
      int _year;
      int _month;
      int _day;
 };
  void TestDate()
 {
      Date d1; // 调用无参构造函数
      Date d2(2023, 5, 17); // 调用带参的构造函数
      // 注意:如果通过无参构造函数创建对象时,对象后面不用跟括号,否则就成了函数声明
      // warning C4930: “Date d3(void)”: 未调用原型函数(是否是有意用变量定义的?)
      // 以下代码的函数:声明了d3函数,该函数无参,返回一个日期类型的对象
      Date d3();
 }

注意:如果通过无参构造函数创建对象时,对象后面不用跟括号,否则就成了函数声明

  class Date
 {
  public:
 /*
 // 如果用户显式定义了构造函数,编译器将不再生成
 Date(int year, int month, int day)
 {
 _year = year;
 _month = month;
 _day = day;
 }
 */
 void Print()
 {
 cout << _year << "-" << _month << "-" << _day << endl;
 }
  private:
 int _year;
 int _month;
 int _day;
 };
  int main()
 {
 // 将Date类中构造函数屏蔽后,代码可以通过编译,因为编译器生成了一个无参的默认构造函数
 // 将Date类中构造函数放开,代码编译失败,因为一旦显式定义任何构造函数,编译器将不再生成
      // 无参构造函数,当写了构造函数并调用无参则会报错:error C2512: “Date”: 没有合适的默认构造函数可用
 Date d1;
 return 0;
 }

关于编译器生成的默认成员函数,很多童鞋会有疑惑:不实现构造函数的情况下,编译器会 生成默认的构造函数。但是看起来默认构造函数又没什么用?d对象调用了编译器生成的默 认构造函数,但是d对象_year/_month/_day,依旧是随机值。也就说在这里编译器生成的 默认构造函数并没有什么用??


解答:C++把类型分成内置类型(基本类型)和自定义类型。内置类型就是语言提供的数据类 型,如:int/char...,自定义类型就是我们使用class/struct/union等自己定义的类型。


06cd3d0af24c5cb8be5d3837fff04394_5c45f84095d845e6a9b05cd55b67cfde.png

06cd3d0af24c5cb8be5d3837fff04394_5c45f84095d845e6a9b05cd55b67cfde.png

无参的构造函数和全缺省的构造函数都称为默认构造函数,并且默认构造函数只能有一个。

注意:无参构造函数、全缺省构造函数、我们没写编译器默认生成的构造函数,都可以认为 是默认构造函数。

下面这两个函数,可以同时存在吗?

Date()
  {
    _year = 1;
    _month = 1;
    _day = 1;
  }
  Date(int year=1, int month=1, int day=1)
  {
    _year = year;
    _month = month;
    _day = day;
  }

从语法上,是可以同时存在,因为这两个完全符合重载函数的定义

实际上,这里是不可以同时存在的,因为编译器说他重载函数的调用不明确

析构函数

概念

通过前面构造函数的学习,我们知道一个对象是怎么来的,那一个对象又是怎么删除呢的?

析构函数:与构造函数功能相反,析构函数不是完成对对象本身的销毁,局部对象销毁工作是由 编译器完成的。而对象在销毁时会自动调用析构函数,完成对象中资源的清理工作。

特性

析构函数是特殊的成员函数,其特征如下:


1. 析构函数名是在类名前加上字符 ~。


2. 无参数无返回值类型。


3. 一个类只能有一个析构函数。若未显式定义,系统会自动生成默认的析构函数。注意:析构 函数不能重载


4. 对象生命周期结束时,C++编译系统系统自动调用析构函数。


5. 关于编译器自动生成的析构函数,是否会完成一些事情呢?下面的程序我们会看到,编译器 生成的默认析构函数,对自定类型成员调用它的析构函数。

class Time
{
public:
 ~Time()
 {
 cout << "~Time()" << endl;
 }
private:
 int _hour;
 int _minute;
 int _second;
};
class Date
{
private:
 // 基本类型(内置类型)
 int _year = 1970;
 int _month = 1;
 int _day = 1;
 // 自定义类型
 Time _t;
};
int main()
{
 Date d;
 return 0;
}
// 程序运行结束后输出:~Time()
// 在main方法中根本没有直接创建Time类的对象,为什么最后会调用Time类的析构函数?
// 因为:main方法中创建了Date对象d,而d中包含4个成员变量,其中_year, _month,_day三个是
// 内置类型成员,销毁时不需要资源清理,最后系统直接将其内存回收即可;而_t是Time类对象,所以在d销
//毁时,要将其内部包含的Time类的_t对象销毁,所以要调用Time类的析构函数。但是:main函数
// 中不能直接调用Time类的析构函数,实际要释放的是Date类对象,所以编译器会调用Dat类的析构函
// 数,而Date没有显式提供,则编译器会给Date类生成一个默认的析构函数,目的是在其内部调用Time
// 类的析构函数,即当Date对象销毁时,要保证其内部每个自定义对象都可以正确销毁
// main函数中并没有直接调用Time类析构函数,而是显式调用编译器为Date类生成的默认析构函数
// 注意:创建哪个类的对象则调用该类的析构函数,销毁那个类的对象则调用该类的析构函数

拷贝构造函数

概念

拷贝构造函数:只有单个形参,该形参是对本类类型对象的引用(一般常用const修饰),在用已存 在的类类型对象创建新对象时由编译器自动调用。

特征

拷贝构造函数也是特殊的成员函数,

其特征如下:

1. 拷贝构造函数是构造函数的一个重载形式

2. 拷贝构造函数的参数只有一个且必须是类类型对象的引用,使用传值方式编译器直接报错, 因为会引发无穷递归调用。

class Date
{
public:
 Date(int year = 1900, int month = 1, int day = 1)
 {
 _year = year;
 _month = month;
 _day = day;
 }
 // Date(const Date& d)   // 正确写法
    Date(const Date d)   // 错误写法:编译报错,会引发无穷递归
 {
 _year = d._year;
 _month = d._month;
 _day = d._day;
 }
private:
 int _year;
 int _month;
 int _day;
};
int main()
{
 Date d1;
 Date d2(d1);
 return 0;
}

这里编译器编译不过去的,因为编译器认为这里会无限递归

10a506ea3c2ad51e396546df3ab482a0_a1ef252116b94b1ea16dc4af86a5e882.png

f86f98d43fdaf5bcd3f12202dceb68e1_23666638ab864d54816f18b5a6f52a28.png

在C++中,函数调用如果是传值调用都是需要创建一个临时变量,将值拷贝一份给这个临时变量,而将值拷贝一份本身就是一个拷贝构造函数,因此就会死循环,造成无穷递归。

我们最好在参数加个const修饰,这样可以防止权限放大

Date(const Date& d)
  {
    _year = d._year;
    _month = d._month;
    _day = d._day;
  }
int main()
{
    Date d1;
    Date d2(d1);
}

3. 若未显式定义,编译器会生成默认的拷贝构造函数。 默认的拷贝构造函数对象按内存存储按 字节序完成拷贝,这种拷贝叫做浅拷贝,或者值拷贝。


注意:在编译器生成的默认拷贝构造函数中,内置类型是按照字节方式直接拷贝的,而自定 义类型是调用其拷贝构造函数完成拷贝的。


注意:类中如果没有涉及资源申请时,拷贝构造函数是否写都可以;一旦涉及到资源申请 时,则拷贝构造函数是一定要写的,否则就是浅拷贝。


5. 拷贝构造函数典型调用场景:


使用已存在对象创建新对象

函数参数类型为类类型对象


函数返回值类型为类类型对象\


为了提高程序效率,一般对象传参时,尽量使用引用类型,返回时根据实际场景,能用引用 尽量使用引用

赋值运算符重载

运算符重载

C++为了增强代码的可读性引入了运算符重载,运算符重载是具有特殊函数名的函数,也具有其 返回值类型,函数名字以及参数列表,其返回值类型与参数列表与普通的函数类似。


函数名字为:关键字operator后面接需要重载的运算符符号。


函数原型:返回值类型 operator操作符(参数列表)


注意:


不能通过连接其他符号来创建新的操作符:比如operator@

重载操作符必须有一个类类型参数

用于内置类型的运算符,其含义不能改变,例如:内置的整型+,不 能改变其含义 作为类成员函数重载时,其形参看起来比操作数数目少1,因为成员函数的第一个参数为隐 藏的this

  .*       ::      sizeof      ?:       .      注意以上5个运算符不能重载。这个经常在笔试选择题中出现。

bool operator==(const Date& d1, const Date& d2)
{
    return d1._year == d2._year
   && d1._month == d2._month
        && d1._day == d2._day;
}

<<(流插入)的优先级比==高,因此下面这个语句会报错

cout << d1 == d2 << endl;

改成:cout << (d1 == d2) << endl;

赋值运算符重载

赋值运算符重载格式

  • 参数类型:const T&,传递引用可以提高传参效率
  • 返回值类型:T&,返回引用可以提高返回的效率,有返回值目的是为了支持连续赋值
  • 检测是否自己给自己赋值
  • 返回*this :要复合连续赋值的含义
class Date
{ 
public :
 Date(int year = 1900, int month = 1, int day = 1)
   {
        _year = year;
        _month = month;
        _day = day;
   }
 Date (const Date& d)
   {
        _year = d._year;
        _month = d._month;
        _day = d._day;
   }
 Date& operator=(const Date& d)
 {
 if(this != &d)
       {
            _year = d._year;
            _month = d._month;
            _day = d._day;
       }
        return *this;
 }
private:
       int _year ;
       int _month ;
       int _day ;
};  

赋值运算符只能重载成类的成员函数不能重载成全局函数

// 赋值运算符重载成全局函数,注意重载成全局函数时没有this指针了,需要给两个参数
Date& operator=(Date& left, const Date& right)
{
if (&left != &right)
{
left._year = right._year;
left._month = right._month;
left._day = right._day;
}
return left;
}
// 编译失败:
// error C2801: “operator =”必须是非静态成员

赋值运算符如果不显式实现,编译器会生成一个默认的。此时用户再在类外自己实现 一个全局的赋值运算符重载,就和编译器在类中生成的默认赋值运算符重载冲突了,故赋值运算符重载只能是类的成员函数。

用户没有显式实现时,编译器会生成一个默认赋值运算符重载,以值的方式逐字节拷贝。

注 意:内置类型成员变量是直接赋值的,而自定义类型成员变量需要调用对应类的赋值运算符 重载完成赋值。

前置++和后置++的运算符重载

前置++和后置++都是一元运算符,为了让前置++与后置++形成能正确重载
C++规定:后置++重载时多增加一个int类型的参数,但调用函数时该参数不用传递,编译器自动传递

 

Date& Date::operator++()
{//++d1
  *this +=  1;
  return *this;
}
Date Date::operator++(int)
{//d1++
  Date tmp(*this);
  *this += 1;
  return tmp;
}

前置++:返回+1之后的结果
注意:this指向的对象函数结束后不会销毁,故以引用方式返回提高效率

后置++是先使用后+1,因此需要返回+1之前的值,故需在实现时需要先将this保存

const成员函数

将const修饰的“成员函数”称之为const成员函数,const修饰类成员函数,实际修饰该成员函数 隐含的this指针,表明在该成员函数中不能对类的任何成员进行修改。

522967d65dc3545bb68bdf3612f27edb_8507b3f857eb47f5b957a4a18a5da30b.png

class Date
{
public:
 Date(int year, int month, int day)
 {
 _year = year;
 _month = month;
 _day = day;
 }
 void Print()
 {
 cout << "Print()" << endl;
 cout << "year:" << _year << endl;
 cout << "month:" << _month << endl;
 cout << "day:" << _day << endl << endl;
 }
 void Print() const
 {
 cout << "Print()const" << endl;
 cout << "year:" << _year << endl;
 cout << "month:" << _month << endl;
 cout << "day:" << _day << endl << endl;
 }
private:
 int _year; // 年
 int _month; // 月
 int _day; // 日
};
void Test()
{
 Date d1(2022,1,13);
 d1.Print();
 const Date d2(2022,1,13);
 d2.Print();
}

请思考下面的几个问题:


1. const对象可以调用非const成员函数吗?                       不可以


2. 非const对象可以调用const成员函数吗?                         可以


3. const成员函数内可以调用其它的非const成员函数吗?   不可以


4. 非const成员函数内可以调用其它的const成员函数吗?    可以


注意:权限只能缩小,不能扩大

取地址及const取地址操作符重载

这两个默认成员函数一般不用重新定义 ,编译器默认会生成。

class Date
{ 
public :
 Date* operator&()
 {
 return this ;
}
 const Date* operator&()const
 {
 return this ;
 }
private :
 int _year ; // 年
 int _month ; // 月
 int _day ; // 日
};

这两个运算符一般不需要重载,使用编译器生成的默认取地址的重载即可,只有特殊情况,才需 要重载,比如想让别人获取到指定的内容!

日期类代码:

Date.h:

#pragma once
#include<iostream>
#include<assert.h>
using namespace std;
class Date
{
public:
  //构造函数
  Date(int year = 1900, int month = 1, int day = 1);
  //获取某月天数
  int GetMonthDay(int year, int month);
  //打印
  void Print();
  bool operator==(const Date& d);
  bool operator!=(const Date& d);
  bool operator<(const Date& d);
  bool operator<=(const Date& d);
  bool operator>(const Date& d);
  bool operator>=(const Date& d);
  Date& operator+=(int day);
  Date operator+(int day);
  // d1 - 100 日期 - 天数
  Date operator-(int day);
  Date& operator-=(int day);
  // d1 - d2; 日期 - 日期
  int operator-(const Date& d);
  //++d1
  Date& operator++();
  // d1++
    // int参数 仅仅是为了占位,跟前置重载区分
  Date operator++(int);
  // --d1 -> d1.operator--()
  Date& operator--();
  // d1-- -> d1.operator--(1)
  Date operator--(int);
private:
  int _year;
  int _month;
  int _day;
};

Date.cpp:

#include"Date.h"
int Date::GetMonthDay(int year, int month)
{
  assert(month > 0 && month < 13);
  int monthArray[13] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
  if (month == 2 && ((year % 4 == 0 && year % 100 != 0) || (year % 400)) == 0)
  {
    return 29;
  }
  else
  {
    return monthArray[month];
  }
}
Date::Date(int year, int month, int day)
{
  if (month > 0 && month < 13
    && (day > 0 && day <= GetMonthDay(year, month)))
  {
    _year = year;
    _month = month;
    _day = day;
  }
  else
  {
    cout << "输入格式错误" << endl;
  }
}
void Date::Print()
{
  cout << _year << "/" << _month << "/" << _day << endl;
}
bool Date:: operator == (const Date& d)
{
  return _year == d._year
    && _month == d._month
    && _day == d._day;
}
bool Date::operator!=(const Date& d)
{
  return !(*this == d);
}
bool Date::operator<(const Date& d)
{
  return _year < d._year
    || (_year == d._year && _month < d._month)
    || (_year == d._year && _month == d._month && _day < d._day);
}
bool Date::operator<=(const Date& d)
{
  return *this <= d || *this == d;
}
bool Date::operator>(const Date& d)
{
  return !(*this <= d);
}
bool Date::operator>=(const Date& d)
{
  return !(*this < d);
}
Date& Date::operator+=(int day)
{
  if (day < 0)
  {
    *this -= -day;
    return *this;
  }
  _day += day;
  while (_day > GetMonthDay(_year, _month))
  {
    _day -= GetMonthDay(_year, _month);
    _month++;
    if (_month == 13)
    {
      _year++;
      _month = 1;
    }
  }
  return *this;
}
Date Date::operator+(int day)
{
  Date tmp(*this);
  tmp += day;
  return tmp;
}
Date& Date::operator-=(int day)
{
  if (day < 0)
  {
    *this += -day;
    return *this;
  }
  _day -= day;
  while (_day <= 0)
  {
    --_month;
    if (_month == 0)
    {
      _year--;
      _month = 12;
    }
    _day += GetMonthDay(_year, _month);
  }
  return *this;
}
// d1 - 100 日期 - 天数
Date Date::operator-(int day)
{
  Date tmp(*this);
  tmp -= day;
  return tmp;
}
Date& Date::operator++()
{
  *this += 1;
  return *this;
}
// d1++
Date Date::operator++(int)
{
  Date tmp(*this);
  *this += 1;
  return tmp;
}
// --d1 -> d1.operator--()
Date& Date::operator--()
{
  *this -= 1;
  return *this;
}
// d1-- -> d1.operator--(1)
Date Date::operator--(int)
{
  Date tmp(*this);
  *this -= 1;
  return tmp;
}
// d1 - d2; 日期 - 日期
int Date::operator-(const Date& d)
{
  Date max = *this;
  Date min = d;
  int flag = 1;
  while ( *this < d)
  {
    max = d;
    min = *this;
    flag = -1;
  }
  int n = 0;
  while (min != max)
  {
    ++min;
    ++n;
  }
  return n * flag;
}

 

text.cpp:

#include"Date.h"
void TextDate1()
{
  Date d1(2023,5,17);
  d1.Print();
  Date d2(2023, 5, 17);
  cout << (d1 == d2) << endl;
}
void TextDate2()
{
  Date d1(2023, 5, 17);
  d1.Print();
  d1 -= 100;
  d1.Print();
  Date d2(2023, 5, 17);
  d2 += -100;
  d2.Print();
}
void TextDate3()
{
  Date d1(2023, 5, 17);
  d1.Print();
  Date d2(2002, 5, 8);
  d2.Print();
  cout << d1 - d2 << endl;
}
int main()  
{
  TextDate3();
  return 0;
}


相关文章
|
8月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
4月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
116 0
|
4月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
191 0
|
6月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
243 12
|
7月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
144 16
|
7月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
7月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
7月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
410 6
|
7月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
8月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)

热门文章

最新文章