【数据结构】树及二叉树的概念

简介: 【数据结构】树及二叉树的概念

一次失败,只是证明我们成功的决心还够坚强。                                        ——博 维

99ac8b98aefa4e38c9d252ab98f23da0_2086e7a0dc0c4cd3b05eaefa7b421406.jpeg

目录

🎄树概念及结构:

✔树的概念:

✔树的相关概念 :编辑

✔树的表示:

✔树在实际中的运用:

🎄二叉树概念及结构

✔概念

✔现实中的二叉树:

✔特殊的二叉树:

✔二叉树的性质:


🎄树概念及结构:

✔树的概念:

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

b1c16102a6c3bef0ea8a1b55e7c2767f_bad2a197314a4a9e89cf7b94d4b699dc.png


有一个特殊的结点,称为根结点,根节点没有前驱结点

除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继

因此,树是递归定义的。

5becb14ef3a48270caa0e69b428c3e98_9b3f210db97341b48eb2cb9eac9c25aa.png

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

d2f485cf66091fc9285fd2ec8f738c9b_1f38f17b777b4c82ac3d55bce8d16ed0.png

这里最上面的三个图,他们之间构成了环,都不是树

✔树的相关概念 :

  1. 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
  2. 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
  3. 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
  4. 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
  5. 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
  6. 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
  7. 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
  8. 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  9. 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
  10. 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
  11. 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
  12. 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
  13. 森林:由m(m>0)棵互不相交的树的集合称为森林;  

注:颜色不是黑色的重要

✔树的表示:

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间 的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的孩子兄弟表示法

✔树在实际中的运用:

就像电脑中每个磁盘中的文件也是树在实际当中的运用

🎄二叉树概念及结构

✔概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空

2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

81af326190172493ae8436e747df430b_be150dbe1cb645cfb97decc0a5f4b22f.png

从上图可以看出:

1. 二叉树不存在度大于2的结点

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

9de7ed2298b2144bc1365a148a9176e3_7e4e441547514f059920686c900fffea.png

✔现实中的二叉树:

来让我们看看大自然创造的鬼斧神工:

✔特殊的二叉树:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。


2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。


二叉树的性质:

  1. .若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)个结点.
  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2^h - 1.
  3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有 n0= n2+1
  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log2(n+1) . (ps:log2(n+1) 是log以2 为底,n+1为对数)
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对 于序号为i的结点有:
  6. 1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

  7. 2. 若2i+1=n否则无左孩子

  8. 3. 若2i+2=n否则无右孩子


相关文章
|
7月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
222 10
 算法系列之数据结构-二叉树
|
7月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
173 3
 算法系列之数据结构-Huffman树
|
7月前
|
存储 自然语言处理 数据库
【数据结构进阶】AVL树深度剖析 + 实现(附源码)
在深入探讨了AVL树的原理和实现后,我们不难发现,这种数据结构不仅优雅地解决了传统二叉搜索树可能面临的性能退化问题,还通过其独特的平衡机制,确保了在任何情况下都能提供稳定且高效的查找、插入和删除操作。
569 19
|
9月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
243 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
9月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
205 12
|
9月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
175 10
|
11月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
242 59
|
4月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
78 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
9月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
374 77