数据结构 跳跃表 C语言实现

简介: 数据结构 跳跃表 C语言实现

1. 什么是跳跃表

在解释这个之前,首先要看看 链表 和 数组 的区别


1.1 数组


用一组地址连续的存储单元以此存储线性表的数据元素,所以可以通过下标来获取

在申明数组的时候,需要指定大小


例如: int nums[5] = {9,12,15,21,35};

例如如下所示


image.png


对于有序数组而言,查找可以进行二分查找,提高查找效率。

若要对数组进行增加/删除等操作,会引发问题,例如,增加一个 16

image.png


这意味着,15以后的元素,都需要往后移位,才能插入这个元素,非常麻烦,而链表能够规避数组这一点。



1.2 链表

链表节点由2部分组成,即: 数据域指针域,所以数据元素之间的逻辑关系是由节点中的指针来指示的。

同样存储 9,12,15,21,35 ,存储如下

image.png


由于节点的逻辑关系由节点中的指针来完成的,所以添加/删除节点非常方便(就不画了),但是没办法通过下标来定位节点,所以没办法做二分查询



1.3 数组和链表的区别

1、 数组需要在使用前提前规划长度,而链表不用

2、 数组开辟的是连续内存地址空间,而链表是随机申请空间

3、 数组寻址方式是靠下标,而链表是靠节点指针


1.3 跳跃表

所有的索引,都是真实实际的节点

跳表是 链表 + 索引 的一种数据结构 ,是以空间换取时间的方式,可以对链表进行类似二分查找操作。

同样存储 9,12,15,21,35 ,跳跃表存储可能如下

image.png


链表中要查询 15 这个节点

那么会遍历 9——12——15

跳表中查询15这个节点

那么会遍历 12——15

当链表数据被无限拉大时,查询效果会逐渐提现出来



2. 如何构建跳跃表

跳表比较好理解,但是实际用代码来表示,还是有点复杂的。

实现的方法不唯一

1、 跳跃表的最大层数应当被提前定义

2、 应当提前构建出跳跃表的头结点



2.1 如何判断是否要建立索引

采用抛硬币的方式,建立一个随机函数,随机返回 true 或者 false

当一个数据节点被插入后,应当调用该随机函数,若 结果为 false 或者达到 跳表最大层数 则停止,否则应当在该层建立索引


2.2 新增节点

跳表需要新增有序的数据节点,否则不能进行索引查询


新增节点逻辑

  • 找到当前跳跃表最高有效层
  • 进行索引逻辑判断,至最底层元素数据层(节点寻址路线需要记住)
  • 进行节点插入
  • 建立索引


假设有如下跳表:

image.png


新增节点 13

image.png

建立索引

建设建立随机函数结果一直未 true


image.png



删除/查找 逻辑类似



3. 如何构建跳跃表


跳跃表插入

1、 初始化所有层的Head节点

2、 在插入的时候,找到原始数据层,插入完毕后,进行向上建立索引


跳跃表查找

1、 找到目前有效索引最高层

2、 进行索引判断,定位到原始数据层

3、 依序查找


跳跃表删除

1、 按照查找 找到原始数据层

2、 删除原始数据,并且判断该值是否有索引,若没有,则删除完毕,若有则删除索引


代码

# include <stdio.h>
# include <stdlib.h>
# include <stdbool.h>
int MaxLevel = 8; // 最大层数
int currLevel = 0; // 当前层数
// 数据节点
typedef struct node {
        int data;
        struct node *next;
        struct node *last;
        struct node *up;
        struct node *down;
} Node;
// 记录索引寻址过程
typedef struct {
        int level;
        struct node *node;
} skipStep;
// 判断是否需要新增索引, 抛硬币
bool randNum() {
        if(0 == (rand() % 2))
                return true;
        return false;
}
// 新增节点
bool add(Node *SL[] , int data) {
        printf("新增节点: %d\n",data);
        int level = currLevel;
        Node *Head = NULL;
        Node *tmp = NULL;
        Node *last = NULL;
        // 初始化索引 数据为 Head 地址
        skipStep steps[MaxLevel];
        int i;
        for (i=0;i<MaxLevel;i++) {
                steps[i].level = 0;
                steps[i].node = SL[i];
                Node *ss = steps[i].node;
        }
        // 赛选无效层
        Head = SL[level];
        tmp = Head->next;
        while ((level > 0) && (data < tmp->data)) {
                level--;
                Head = SL[level];
                tmp = Head->next;
        }
        // 根据索引寻找Head0数据节点
        while ((level > 0)) {
                while (tmp != NULL) {
                        if (data < tmp->data) {
                                steps[level].level = level;
                                if (NULL != last) 
                                        steps[level].node = last;
                                tmp = last->down;
                                level--;
                                break;
                        }
                        last = tmp;
                        tmp = tmp->next;
                }
                if (NULL == tmp) {
                        steps[level].level = level;
                        if (NULL != last) 
                                steps[level].node = last;
                        tmp = last->down;
                        level--;
                }
        }
        // Head0 数据合适的节点
        while (tmp != NULL) {
                if (data < tmp->data) {
                        break;
                }
                last = tmp;
                tmp = tmp->next;
        }
        // 新增节点
        Node *newData = (Node *)malloc(sizeof(Node));
        newData->data = data;
        newData->up = NULL;
        newData->down = NULL;
        newData->last = NULL;
        newData->next = NULL;
        int k = 0;
        // Head0 插入原始数据
        if (NULL == last ) {
                // 头结点
                Head = SL[0];
                Node *headNext = Head->next;
                if (NULL != headNext) {
                        newData->next = headNext;
                        headNext->last = newData;
                        newData->last = Head;
                } 
                Head->next = newData;
                newData->last = Head;
        } else if ( NULL == tmp) {
                // 尾节点
                last->next = newData;
                newData->last = last;
        } else {
                // 中间节点
                newData->next = tmp;
                tmp->last = newData;
                newData->last = last;
                last->next = newData;
        }
        // 构建索引
        while (randNum()) {
                k++;
                if (k >= MaxLevel) break;
                // 新增索引数据
                Node *newIndex = (Node *)malloc(sizeof(Node));
                newIndex->data = data;
                newIndex->up = NULL;
                newIndex->down = NULL;
                newIndex->next = NULL;
                newIndex->last = NULL;
                // 建立上下级关系
                newIndex->down = newData;
                newData->up = newIndex;
                Node *node = steps[k].node;
                // node->next
                Node *nextIndex = node->next;
                node->next = newIndex;
                newIndex->last = node;
                newIndex->next = nextIndex;
                if (NULL != nextIndex) 
                        nextIndex->last = newIndex;
                newData = newIndex;
                // 判断是否需要新增索引层数
                if (k > currLevel) 
                        currLevel = k;
        }
}
// 初始化头结点
Node *initSkipList(Node *skipList[]) {
        int i;
        for (i=0;i<MaxLevel;i++) {
                Node *newHead = (Node *)malloc(sizeof(Node));
                if (NULL == newHead) {
                        printf("%d 层 头结点申请失败\n",i);
                        return NULL;
                }
                newHead->data = -1-i;
                newHead->down = NULL;
                newHead->up = NULL;
                newHead->next = NULL;
                newHead->last = NULL;
                skipList[i] = newHead;
        }
        return *skipList;
}
// 打印跳表数据
void PrintSkipList(Node *SL[]) {
        if (NULL == SL) {
                return;
        };
        int level = currLevel;
        //int level = MaxLevel;
        int i;
        for (i=level;i>=0;i--) {
                Node *Head = SL[i];
                Node *tmp = Head->next;
                printf("第%d层\t\t",i);
                while (NULL != tmp) {
                        printf(" %d\t",tmp->data);
                        tmp = tmp->next;
                }
                printf("\n");
        }
}
// 查询数据
Node *query(Node *SL[] , int data) {
        printf("查询数据: %d\n",data);
        int level = currLevel;
        Node *Head = NULL;
        Node *tmp = NULL;
        Node *last = NULL;
        Head = SL[level];
        tmp = Head->next;
        int endQuery = -1;
        // 筛除无效层
        while ((level > 0) && (data < tmp->data)) {
                level--;
                endQuery = tmp->data;
                Head = SL[level];
                tmp = Head->next;
        }
        // 根据索引定位到Head0层
        while ((level > 0 )) {
                while (tmp != NULL) {
                        if (data < (tmp->data)) {
                                level--;
                                endQuery = tmp->data;
                                tmp = last->down;
                                break;
                        }
                        last = tmp;
                        tmp = tmp->next;
                }
                if (NULL == tmp) {
                        tmp = last->down;
                        endQuery = -1;
                        level--;
                }
        }
        // 查询实际数据
        while (NULL != tmp) {
                if (endQuery != -1)
                        if (tmp->data > endQuery) {
                                        tmp = NULL;
                                        break;
                        }
                if (tmp->data == data) {
                        break;
                }
                tmp = tmp->next;
        }
        // 返回查询的数据节点,若没有查询到,应当返回NULL ,否则返回实际的地址
        return tmp;
}
// 删除数据
bool del(Node *SL[],int data) {
        printf("删除数据: %d\n",data);
        // 找到节点地址
        Node *tmp = query(SL,data);
        if (NULL == tmp) {
                printf("未找到节点,删除失败\n");
                return false;
        }
        int level = 0;
        Node *t_last = NULL;
        Node *t_next = NULL;
        // 找到该数据最高索引
        while (NULL != tmp->up) {
                level++;
                tmp = tmp->up;
        }
        // 由上至下删除索引/数据
        while (tmp != NULL) {
                t_last = tmp->last;
                t_next = tmp->next;
                Node *t_down = tmp->down;
                if (t_last == NULL) {
                        printf("上一个节点不可能为空,删除失败,层数: %d\n",level);
                        return false;
                }
                t_last->next = t_next;
                if (NULL != t_next)
                        t_next->last = t_last;
                else
                        t_last->next = NULL;
                if ((t_last == SL[level]) && (NULL == t_next)) {
                        currLevel--;
                }
                free(tmp);
                tmp = t_down;
                level--;
        }
        return true;
}
int main() {
        Node *SL[MaxLevel];
        Node *skipList = initSkipList(SL);
        if (NULL == SL) {
                printf("skipList 申请失败\n");
                return -1;
        }
        // 测试新增
        int num[] = {9,13,11,21,31,45,66,99,101,103,106,8};
        int i;
        for (i=0;i<sizeof(num)/sizeof(int);i++) {
            // bool add(Node *SL[] , int data) {
                add(SL,num[i]);
        }
        printf("打印节点\n");
        PrintSkipList(SL);
        printf("\n");
        // 测试删除
        int delNum[] = {99,21,11,32};
        for (i=0;i<sizeof(delNum)/sizeof(int);i++) {
                del(SL,delNum[i]);
        }
        printf("打印节点\n");
        PrintSkipList(SL);
        printf("\n");
        return 0;
}



执行结果

# gcc skipList.c
# ./a.out
新增节点: 9
新增节点: 13
新增节点: 11
新增节点: 21
新增节点: 31
新增节点: 45
新增节点: 66
新增节点: 99
新增节点: 101
新增节点: 103
新增节点: 106
新增节点: 8
打印节点
第5层            106
第4层            106
第3层            106
第2层            45      106
第1层            8       13      45      99      101     106
第0层            8       9       11      13      21      31      45      66      99      101     103     106
删除数据: 99
查询数据: 99
删除数据: 21
查询数据: 21
删除数据: 11
查询数据: 11
删除数据: 32
查询数据: 32
未找到节点,删除失败
打印节点
第5层            106
第4层            106
第3层            106
第2层            45      106
第1层            8       13      45      101     106
第0层            8       9       13      31      45      66      101     103     106
#









相关文章
|
3天前
|
存储 算法 C语言
通义灵码在考研C语言和数据结构中的应用实践 1-5
通义灵码在考研C语言和数据结构中的应用实践,体验通义灵码的强大思路。《趣学C语言和数据结构100例》精选了五个经典问题及其解决方案,包括求最大公约数和最小公倍数、统计字符类型、求特殊数列和、计算阶乘和双阶乘、以及求斐波那契数列的前20项和。通过这些实例,帮助读者掌握C语言的基本语法和常用算法,提升编程能力。
|
3天前
|
存储 算法 C语言
【趣学C语言和数据结构100例】
《趣学C语言和数据结构100例》精选5个编程问题,涵盖求最大公约数与最小公倍数、字符统计、特殊序列求和及阶乘计算等,通过实例讲解C语言基础与算法思维,适合初学者实践学习。
|
13天前
|
存储 C语言
探索C语言数据结构:利用顺序表完成通讯录的实现
本文介绍了如何使用C语言中的顺序表数据结构实现一个简单的通讯录,包括初始化、添加、删除、查找和保存联系人信息的操作,以及自定义结构体用于存储联系人详细信息。
17 2
|
1月前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
221 8
|
1月前
|
C语言
数据结构基础详解(C语言):图的基本概念_无向图_有向图_子图_生成树_生成森林_完全图
本文介绍了图的基本概念,包括图的定义、无向图与有向图、简单图与多重图等,并解释了顶点度、路径、连通性等相关术语。此外还讨论了子图、生成树、带权图及几种特殊形态的图,如完全图和树等。通过这些概念,读者可以更好地理解图论的基础知识。
|
1月前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
1月前
|
存储 算法 C语言
数据结构基础详解(C语言):单链表_定义_初始化_插入_删除_查找_建立操作_纯c语言代码注释讲解
本文详细介绍了单链表的理论知识,涵盖单链表的定义、优点与缺点,并通过示例代码讲解了单链表的初始化、插入、删除、查找等核心操作。文中还具体分析了按位序插入、指定节点前后插入、按位序删除及按值查找等算法实现,并提供了尾插法和头插法建立单链表的方法,帮助读者深入理解单链表的基本原理与应用技巧。
308 6
|
1月前
|
存储 C语言 C++
数据结构基础详解(C语言) 顺序表:顺序表静态分配和动态分配增删改查基本操作的基本介绍及c语言代码实现
本文介绍了顺序表的定义及其在C/C++中的实现方法。顺序表通过连续存储空间实现线性表,使逻辑上相邻的元素在物理位置上也相邻。文章详细描述了静态分配与动态分配两种方式下的顺序表定义、初始化、插入、删除、查找等基本操作,并提供了具体代码示例。静态分配方式下顺序表的长度固定,而动态分配则可根据需求调整大小。此外,还总结了顺序表的优点,如随机访问效率高、存储密度大,以及缺点,如扩展不便和插入删除操作成本高等特点。
156 5
|
1月前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
1月前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
253 3