【无功优化】基于粒子群算法实现潮流无功优化附matlab代码

简介: 【无功优化】基于粒子群算法实现潮流无功优化附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

电力系统无功优化是保证系统安全,经济运行的有效手段,是提高电力系统电压质量的重要措施之一。无功优化的目的在于确定系统中无功设备的合理配置,以保证电网在满足一定的安全约束条件下,使系统的技术经济性能指标最好,即无功补偿设备的安装投资及电网的运行费用最小。 电力系统无功优化是一个多变量、多约束的混合非线性规划问题,其操作变量既有连续变量又有离散变量,其优化过程比较复杂。本文采用粒子群优化算法求解无功优化问题,给出了运用粒子群优化算法的相应求解步骡,并对部分参数的取值进行了讨论和调整。计算表明,该算法能够同时处理问题中的连续变量和离散变量,能够较好地协调全局搜索和局部搜索,并具有并行计算的特性以及较强的鲁棒性,可以取得令人满意的结果。 本文对IEEE30,IEEE57节点试验系统和石家庄高邑县电网进行了无功优化计算,取得了令人满意的结果,表明用粒子群优化算法求解该问题是可行的、更有效的

⛄ 部分代码

function [baseMVA, bus, gen, branch, areas, gencost] = case_ieee30

% CASE_IEEE30    Power flow data for IEEE 30 bus test case.

%   Please see 'help caseformat' for details on the case file format.

%   This data was converted from IEEE Common Data Format

%   (ieee30cdf.txt) on 20-Sep-2004 by cdf2matp, rev. 1.11

%   See end of file for warnings generated during conversion.

%

%   Converted from IEEE CDF file from:

%       http://www.ee.washington.edu/research/pstca/

%

%  08/20/93 UW ARCHIVE           100.0  1961 W IEEE 30 Bus Test Case


%   MATPOWER

%   $Id: case_ieee30.m,v 1.3 2007/09/17 16:07:48 ray Exp $


%%-----  Power Flow Data  -----%%

%% system MVA base

baseMVA = 100;


%% bus data

% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin

bus = [

1 3 0 0 0 0 1 1.06 0 132 1 1.06 0.94;

2 2 21.7 12.7 0 0 1 1.043 -5.48 132 1 1.06 0.94;

3 1 2.4 1.2 0 0 1 1.021 -7.96 132 1 1.06 0.94;

4 1 7.6 1.6 0 0 1 1.012 -9.62 132 1 1.06 0.94;

5 2 94.2 19 0 0 1 1.01 -14.37 132 1 1.06 0.94;

6 1 0 0 0 0 1 1.01 -11.34 132 1 1.06 0.94;

7 1 22.8 10.9 0 0 1 1.002 -13.12 132 1 1.06 0.94;

8 2 30 30 0 0 1 1.01 -12.1 132 1 1.06 0.94;

9 1 0 0 0 0 1 1.051 -14.38 1 1 1.06 0.94;

10 1 5.8 2 0 19 1 1.045 -15.97 33 1 1.06 0.94;

11 2 0 0 0 0 1 1.082 -14.39 11 1 1.06 0.94;

12 1 11.2 7.5 0 0 1 1.057 -15.24 33 1 1.06 0.94;

13 2 0 0 0 0 1 1.071 -15.24 11 1 1.06 0.94;

14 1 6.2 1.6 0 0 1 1.042 -16.13 33 1 1.06 0.94;

15 1 8.2 2.5 0 0 1 1.038 -16.22 33 1 1.06 0.94;

16 1 3.5 1.8 0 0 1 1.045 -15.83 33 1 1.06 0.94;

17 1 9 5.8 0 0 1 1.04 -16.14 33 1 1.06 0.94;

18 1 3.2 0.9 0 0 1 1.028 -16.82 33 1 1.06 0.94;

19 1 9.5 3.4 0 0 1 1.026 -17 33 1 1.06 0.94;

20 1 2.2 0.7 0 0 1 1.03 -16.8 33 1 1.06 0.94;

21 1 17.5 11.2 0 0 1 1.033 -16.42 33 1 1.06 0.94;

22 1 0 0 0 0 1 1.033 -16.41 33 1 1.06 0.94;

23 1 3.2 1.6 0 0 1 1.027 -16.61 33 1 1.06 0.94;

24 1 8.7 6.7 0 4.3 1 1.021 -16.78 33 1 1.06 0.94;

25 1 0 0 0 0 1 1.017 -16.35 33 1 1.06 0.94;

26 1 3.5 2.3 0 0 1 1 -16.77 33 1 1.06 0.94;

27 1 0 0 0 0 1 1.023 -15.82 33 1 1.06 0.94;

28 1 0 0 0 0 1 1.007 -11.97 132 1 1.06 0.94;

29 1 2.4 0.9 0 0 1 1.003 -17.06 33 1 1.06 0.94;

30 1 10.6 1.9 0 0 1 0.992 -17.94 33 1 1.06 0.94;

];


%% generator data

% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin

gen = [

1 260.2 -16.1 10 0 1.06 100 1 360.2 0;

2 40 50 50 -40 1.045 100 1 140 0;

5 0 37 40 -40 1.01 100 1 100 0;

8 0 37.3 40 -10 1.01 100 1 100 0;

11 0 16.2 24 -6 1.082 100 1 100 0;

13 0 10.6 24 -6 1.071 100 1 100 0;

];

x=[1.06

%% branch data

% fbus tbus r x b rateA rateB rateC ratio angle status

branch = [

1 2 0.0192 0.0575 0.0528 9900 0 0 0 0 1;

1 3 0.0452 0.1652 0.0408 9900 0 0 0 0 1;

2 4 0.057 0.1737 0.0368 9900 0 0 0 0 1;

3 4 0.0132 0.0379 0.0084 9900 0 0 0 0 1;

2 5 0.0472 0.1983 0.0418 9900 0 0 0 0 1;

2 6 0.0581 0.1763 0.0374 9900 0 0 0 0 1;

4 6 0.0119 0.0414 0.009 9900 0 0 0 0 1;

5 7 0.046 0.116 0.0204 9900 0 0 0 0 1;

6 7 0.0267 0.082 0.017 9900 0 0 0 0 1;

6 8 0.012 0.042 0.009 9900 0 0 0 0 1;

6 9 0 0.208 0 9900 0 0 0.978 0 1;

6 10 0 0.556 0 9900 0 0 0.969 0 1;

9 11 0 0.208 0 9900 0 0 0 0 1;

9 10 0 0.11 0 9900 0 0 0 0 1;

4 12 0 0.256 0 9900 0 0 0.932 0 1;

12 13 0 0.14 0 9900 0 0 0 0 1;

12 14 0.1231 0.2559 0 9900 0 0 0 0 1;

12 15 0.0662 0.1304 0 9900 0 0 0 0 1;

12 16 0.0945 0.1987 0 9900 0 0 0 0 1;

14 15 0.221 0.1997 0 9900 0 0 0 0 1;

16 17 0.0524 0.1923 0 9900 0 0 0 0 1;

15 18 0.1073 0.2185 0 9900 0 0 0 0 1;

18 19 0.0639 0.1292 0 9900 0 0 0 0 1;

19 20 0.034 0.068 0 9900 0 0 0 0 1;

10 20 0.0936 0.209 0 9900 0 0 0 0 1;

10 17 0.0324 0.0845 0 9900 0 0 0 0 1;

10 21 0.0348 0.0749 0 9900 0 0 0 0 1;

10 22 0.0727 0.1499 0 9900 0 0 0 0 1;

21 22 0.0116 0.0236 0 9900 0 0 0 0 1;

15 23 0.1 0.202 0 9900 0 0 0 0 1;

22 24 0.115 0.179 0 9900 0 0 0 0 1;

23 24 0.132 0.27 0 9900 0 0 0 0 1;

24 25 0.1885 0.3292 0 9900 0 0 0 0 1;

25 26 0.2544 0.38 0 9900 0 0 0 0 1;

25 27 0.1093 0.2087 0 9900 0 0 0 0 1;

28 27 0 0.396 0 9900 0 0 0.968 0 1;

27 29 0.2198 0.4153 0 9900 0 0 0 0 1;

27 30 0.3202 0.6027 0 9900 0 0 0 0 1;

29 30 0.2399 0.4533 0 9900 0 0 0 0 1;

8 28 0.0636 0.2 0.0428 9900 0 0 0 0 1;

6 28 0.0169 0.0599 0.013 9900 0 0 0 0 1;

];


%%-----  OPF Data  -----%%

%% area data

areas = [

1 1;

];


%% generator cost data

% 1 startup shutdown n x1 y1 ... xn yn

% 2 startup shutdown n c(n-1) ... c0

gencost = [

2 0 0 3 0.038432 20 0;

2 0 0 3 0.25 20 0;

2 0 0 3 0.01 40 0;

2 0 0 3 0.01 40 0;

2 0 0 3 0.01 40 0;

2 0 0 3 0.01 40 0;

];


return;


% Warnings from cdf2matp conversion:

%

% ***** Qmax = Qmin at generator at bus    1 (Qmax set to Qmin + 10)

% ***** area data conversion not yet implemented (creating dummy area data)

% ***** MVA limit of branch 1 - 2 not given, set to 9900

% ***** MVA limit of branch 1 - 3 not given, set to 9900

% ***** MVA limit of branch 2 - 4 not given, set to 9900

% ***** MVA limit of branch 3 - 4 not given, set to 9900

% ***** MVA limit of branch 2 - 5 not given, set to 9900

% ***** MVA limit of branch 2 - 6 not given, set to 9900

% ***** MVA limit of branch 4 - 6 not given, set to 9900

% ***** MVA limit of branch 5 - 7 not given, set to 9900

% ***** MVA limit of branch 6 - 7 not given, set to 9900

% ***** MVA limit of branch 6 - 8 not given, set to 9900

% ***** MVA limit of branch 6 - 9 not given, set to 9900

% ***** MVA limit of branch 6 - 10 not given, set to 9900

% ***** MVA limit of branch 9 - 11 not given, set to 9900

% ***** MVA limit of branch 9 - 10 not given, set to 9900

% ***** MVA limit of branch 4 - 12 not given, set to 9900

% ***** MVA limit of branch 12 - 13 not given, set to 9900

% ***** MVA limit of branch 12 - 14 not given, set to 9900

% ***** MVA limit of branch 12 - 15 not given, set to 9900

% ***** MVA limit of branch 12 - 16 not given, set to 9900

% ***** MVA limit of branch 14 - 15 not given, set to 9900

% ***** MVA limit of branch 16 - 17 not given, set to 9900

% ***** MVA limit of branch 15 - 18 not given, set to 9900

% ***** MVA limit of branch 18 - 19 not given, set to 9900

% ***** MVA limit of branch 19 - 20 not given, set to 9900

% ***** MVA limit of branch 10 - 20 not given, set to 9900

% ***** MVA limit of branch 10 - 17 not given, set to 9900

% ***** MVA limit of branch 10 - 21 not given, set to 9900

% ***** MVA limit of branch 10 - 22 not given, set to 9900

% ***** MVA limit of branch 21 - 22 not given, set to 9900

% ***** MVA limit of branch 15 - 23 not given, set to 9900

% ***** MVA limit of branch 22 - 24 not given, set to 9900

% ***** MVA limit of branch 23 - 24 not given, set to 9900

% ***** MVA limit of branch 24 - 25 not given, set to 9900

% ***** MVA limit of branch 25 - 26 not given, set to 9900

% ***** MVA limit of branch 25 - 27 not given, set to 9900

% ***** MVA limit of branch 28 - 27 not given, set to 9900

% ***** MVA limit of branch 27 - 29 not given, set to 9900

% ***** MVA limit of branch 27 - 30 not given, set to 9900

% ***** MVA limit of branch 29 - 30 not given, set to 9900

% ***** MVA limit of branch 8 - 28 not given, set to 9900

% ***** MVA limit of branch 6 - 28 not given, set to 9900

function [baseMVA, bus, gen, branch, areas, gencost] = case_ieee30

% CASE_IEEE30    Power flow data for IEEE 30 bus test case.

%   Please see 'help caseformat' for details on the case file format.

%   This data was converted from IEEE Common Data Format

%   (ieee30cdf.txt) on 20-Sep-2004 by cdf2matp, rev. 1.11

%   See end of file for warnings generated during conversion.

%

%   Converted from IEEE CDF file from:

%       http://www.ee.washington.edu/research/pstca/

%

%  08/20/93 UW ARCHIVE           100.0  1961 W IEEE 30 Bus Test Case


%   MATPOWER

%   $Id: case_ieee30.m,v 1.3 2007/09/17 16:07:48 ray Exp $


%%-----  Power Flow Data  -----%%

%% system MVA base

baseMVA = 100;


%% bus data

% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin

bus = [

1 3 0 0 0 0 1 1.06 0 132 1 1.06 0.94;

2 2 21.7 12.7 0 0 1 1.043 -5.48 132 1 1.06 0.94;

3 1 2.4 1.2 0 0 1 1.021 -7.96 132 1 1.06 0.94;

4 1 7.6 1.6 0 0 1 1.012 -9.62 132 1 1.06 0.94;

5 2 94.2 19 0 0 1 1.01 -14.37 132 1 1.06 0.94;

6 1 0 0 0 0 1 1.01 -11.34 132 1 1.06 0.94;

7 1 22.8 10.9 0 0 1 1.002 -13.12 132 1 1.06 0.94;

8 2 30 30 0 0 1 1.01 -12.1 132 1 1.06 0.94;

9 1 0 0 0 0 1 1.051 -14.38 1 1 1.06 0.94;

10 1 5.8 2 0 19 1 1.045 -15.97 33 1 1.06 0.94;

11 2 0 0 0 0 1 1.082 -14.39 11 1 1.06 0.94;

12 1 11.2 7.5 0 0 1 1.057 -15.24 33 1 1.06 0.94;

13 2 0 0 0 0 1 1.071 -15.24 11 1 1.06 0.94;

14 1 6.2 1.6 0 0 1 1.042 -16.13 33 1 1.06 0.94;

15 1 8.2 2.5 0 0 1 1.038 -16.22 33 1 1.06 0.94;

16 1 3.5 1.8 0 0 1 1.045 -15.83 33 1 1.06 0.94;

17 1 9 5.8 0 0 1 1.04 -16.14 33 1 1.06 0.94;

18 1 3.2 0.9 0 0 1 1.028 -16.82 33 1 1.06 0.94;

19 1 9.5 3.4 0 0 1 1.026 -17 33 1 1.06 0.94;

20 1 2.2 0.7 0 0 1 1.03 -16.8 33 1 1.06 0.94;

21 1 17.5 11.2 0 0 1 1.033 -16.42 33 1 1.06 0.94;

22 1 0 0 0 0 1 1.033 -16.41 33 1 1.06 0.94;

23 1 3.2 1.6 0 0 1 1.027 -16.61 33 1 1.06 0.94;

24 1 8.7 6.7 0 4.3 1 1.021 -16.78 33 1 1.06 0.94;

25 1 0 0 0 0 1 1.017 -16.35 33 1 1.06 0.94;

26 1 3.5 2.3 0 0 1 1 -16.77 33 1 1.06 0.94;

27 1 0 0 0 0 1 1.023 -15.82 33 1 1.06 0.94;

28 1 0 0 0 0 1 1.007 -11.97 132 1 1.06 0.94;

29 1 2.4 0.9 0 0 1 1.003 -17.06 33 1 1.06 0.94;

30 1 10.6 1.9 0 0 1 0.992 -17.94 33 1 1.06 0.94;

];


%% generator data

% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin

gen = [

1 260.2 -16.1 10 0 1.06 100 1 360.2 0;

2 40 50 50 -40 1.045 100 1 140 0;

5 0 37 40 -40 1.01 100 1 100 0;

8 0 37.3 40 -10 1.01 100 1 100 0;

11 0 16.2 24 -6 1.082 100 1 100 0;

13 0 10.6 24 -6 1.071 100 1 100 0;

];

x=[1.06

%% branch data

% fbus tbus r x b rateA rateB rateC ratio angle status

branch = [

1 2 0.0192 0.0575 0.0528 9900 0 0 0 0 1;

1 3 0.0452 0.1652 0.0408 9900 0 0 0 0 1;

2 4 0.057 0.1737 0.0368 9900 0 0 0 0 1;

3 4 0.0132 0.0379 0.0084 9900 0 0 0 0 1;

2 5 0.0472 0.1983 0.0418 9900 0 0 0 0 1;

2 6 0.0581 0.1763 0.0374 9900 0 0 0 0 1;

4 6 0.0119 0.0414 0.009 9900 0 0 0 0 1;

5 7 0.046 0.116 0.0204 9900 0 0 0 0 1;

6 7 0.0267 0.082 0.017 9900 0 0 0 0 1;

6 8 0.012 0.042 0.009 9900 0 0 0 0 1;

6 9 0 0.208 0 9900 0 0 0.978 0 1;

6 10 0 0.556 0 9900 0 0 0.969 0 1;

9 11 0 0.208 0 9900 0 0 0 0 1;

9 10 0 0.11 0 9900 0 0 0 0 1;

4 12 0 0.256 0 9900 0 0 0.932 0 1;

12 13 0 0.14 0 9900 0 0 0 0 1;

12 14 0.1231 0.2559 0 9900 0 0 0 0 1;

12 15 0.0662 0.1304 0 9900 0 0 0 0 1;

12 16 0.0945 0.1987 0 9900 0 0 0 0 1;

14 15 0.221 0.1997 0 9900 0 0 0 0 1;

16 17 0.0524 0.1923 0 9900 0 0 0 0 1;

15 18 0.1073 0.2185 0 9900 0 0 0 0 1;

18 19 0.0639 0.1292 0 9900 0 0 0 0 1;

19 20 0.034 0.068 0 9900 0 0 0 0 1;

10 20 0.0936 0.209 0 9900 0 0 0 0 1;

10 17 0.0324 0.0845 0 9900 0 0 0 0 1;

10 21 0.0348 0.0749 0 9900 0 0 0 0 1;

10 22 0.0727 0.1499 0 9900 0 0 0 0 1;

21 22 0.0116 0.0236 0 9900 0 0 0 0 1;

15 23 0.1 0.202 0 9900 0 0 0 0 1;

22 24 0.115 0.179 0 9900 0 0 0 0 1;

23 24 0.132 0.27 0 9900 0 0 0 0 1;

24 25 0.1885 0.3292 0 9900 0 0 0 0 1;

25 26 0.2544 0.38 0 9900 0 0 0 0 1;

25 27 0.1093 0.2087 0 9900 0 0 0 0 1;

28 27 0 0.396 0 9900 0 0 0.968 0 1;

27 29 0.2198 0.4153 0 9900 0 0 0 0 1;

27 30 0.3202 0.6027 0 9900 0 0 0 0 1;

29 30 0.2399 0.4533 0 9900 0 0 0 0 1;

8 28 0.0636 0.2 0.0428 9900 0 0 0 0 1;

6 28 0.0169 0.0599 0.013 9900 0 0 0 0 1;

];


%%-----  OPF Data  -----%%

%% area data

areas = [

1 1;

];


%% generator cost data

% 1 startup shutdown n x1 y1 ... xn yn

% 2 startup shutdown n c(n-1) ... c0

gencost = [

2 0 0 3 0.038432 20 0;

2 0 0 3 0.25 20 0;

2 0 0 3 0.01 40 0;

2 0 0 3 0.01 40 0;

2 0 0 3 0.01 40 0;

2 0 0 3 0.01 40 0;

];


return;


% Warnings from cdf2matp conversion:

%

% ***** Qmax = Qmin at generator at bus    1 (Qmax set to Qmin + 10)

% ***** area data conversion not yet implemented (creating dummy area data)

% ***** MVA limit of branch 1 - 2 not given, set to 9900

% ***** MVA limit of branch 1 - 3 not given, set to 9900

% ***** MVA limit of branch 2 - 4 not given, set to 9900

% ***** MVA limit of branch 3 - 4 not given, set to 9900

% ***** MVA limit of branch 2 - 5 not given, set to 9900

% ***** MVA limit of branch 2 - 6 not given, set to 9900

% ***** MVA limit of branch 4 - 6 not given, set to 9900

% ***** MVA limit of branch 5 - 7 not given, set to 9900

% ***** MVA limit of branch 6 - 7 not given, set to 9900

% ***** MVA limit of branch 6 - 8 not given, set to 9900

% ***** MVA limit of branch 6 - 9 not given, set to 9900

% ***** MVA limit of branch 6 - 10 not given, set to 9900

% ***** MVA limit of branch 9 - 11 not given, set to 9900

% ***** MVA limit of branch 9 - 10 not given, set to 9900

% ***** MVA limit of branch 4 - 12 not given, set to 9900

% ***** MVA limit of branch 12 - 13 not given, set to 9900

% ***** MVA limit of branch 12 - 14 not given, set to 9900

% ***** MVA limit of branch 12 - 15 not given, set to 9900

% ***** MVA limit of branch 12 - 16 not given, set to 9900

% ***** MVA limit of branch 14 - 15 not given, set to 9900

% ***** MVA limit of branch 16 - 17 not given, set to 9900

% ***** MVA limit of branch 15 - 18 not given, set to 9900

% ***** MVA limit of branch 18 - 19 not given, set to 9900

% ***** MVA limit of branch 19 - 20 not given, set to 9900

% ***** MVA limit of branch 10 - 20 not given, set to 9900

% ***** MVA limit of branch 10 - 17 not given, set to 9900

% ***** MVA limit of branch 10 - 21 not given, set to 9900

% ***** MVA limit of branch 10 - 22 not given, set to 9900

% ***** MVA limit of branch 21 - 22 not given, set to 9900

% ***** MVA limit of branch 15 - 23 not given, set to 9900

% ***** MVA limit of branch 22 - 24 not given, set to 9900

% ***** MVA limit of branch 23 - 24 not given, set to 9900

% ***** MVA limit of branch 24 - 25 not given, set to 9900

% ***** MVA limit of branch 25 - 26 not given, set to 9900

% ***** MVA limit of branch 25 - 27 not given, set to 9900

% ***** MVA limit of branch 28 - 27 not given, set to 9900

% ***** MVA limit of branch 27 - 29 not given, set to 9900

% ***** MVA limit of branch 27 - 30 not given, set to 9900

% ***** MVA limit of branch 29 - 30 not given, set to 9900

% ***** MVA limit of branch 8 - 28 not given, set to 9900

% ***** MVA limit of branch 6 - 28 not given, set to 9900

⛄ 运行结果

⛄ 参考文献

[1] 董淑华.基于改进粒子群优化算法的电力系统无功优化[D].中南大学,2010.DOI:10.7666/d.y1719172.

[2] 陶国正,徐志成.基于粒子群优化算法的电力系统无功优化[J].计算机工程, 2010, 36(20):3.DOI:10.3969/j.issn.1000-3428.2010.20.069.

[3] 耿彦波.基于粒子群算法的电力系统无功优化[D].华北电力大学(北京),2009.DOI:10.7666/d.D518246.

[4] 周敏,王劲草,吴刚.基于粒子群算法的电力系统无功优化[J].电工技术, 2014, 000(005):34-35.DOI:10.3969/j.issn.1002-1388.2014.05.018.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关文章
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2月前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
4月前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
4月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
算法 数据可视化 调度
基于PSO粒子群优化的车间调度问题求解matlab仿真,输出甘特图
基于PSO粒子群优化的MATLAB仿真解决车间调度问题,输入机器与工作完成时间,输出甘特图与收敛图,实现多机器多任务最优并行调度。使用MATLAB 2022a版本运行,通过模拟鸟群觅食行为,不断更新粒子速度与位置寻找最优解,采用工序编码,总加工时间为适应度函数,实现快速收敛并可视化调度结果。
230 16
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
6月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。

热门文章

最新文章