每日算法系列【LeetCode 376】摆动序列

简介: 每日算法系列【LeetCode 376】摆动序列

题目描述

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 [6,-3,5,-7,3] 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例1

输入:
[1,7,4,9,2,5]
输出:
6
解释:
整个序列均为摆动序列。

示例2

输入:
[1,17,5,10,13,15,10,5,16,8]
输出:
7
解释:
这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。

示例3

输入:
[1,2,3,4,5,6,7,8,9]
输出:
2

题解

这题题面说的啰里啰唆的,其实就一句话:给你一个序列,找出最长的一个子序列,其中子序列相邻两个数的大小是波形的(也就是大小大小大等等这样的)。

暴力法

用 dfs 枚举所有可能的子序列,然后看最长的是多少,这种方法显然会超时。

动态规划

其实看到这道题,我第一个想到了最长上升子序列,这不就变了个形式嘛,于是动态规划解法直接就有了。

用  表示以  结尾的符合条件的最长子序列长度,其中 s 取 1 表示在  处子序列上升,取 0 表示下降。那么我们只需要遍历之前的所有 j ,如果  ,那么在 j 处必须是要下降的,更新:

如果  ,那么在 j 处必须是要上升的,更新:

然后取数组中最大值就是答案了,时间复杂度  。

动态规划+时间优化

换个定义,用  表示  之前的最长子序列,注意和上面的区别就是不一定以  结尾了。s 取 1 表示最后两个数是上升的,取 0 表示最后两个数是下降的。

这里分为几种情况:

  • :
  • 考虑  ,也就是最后两个数下降的,那肯定不能取  ,因为  比它更小、更优,所以直接更新为  。
  • 考虑  ,也就是最后两个数上升的,那如果不取  ,那更新为  ;如果取的话,我们就要保证 i-1 之前最后两个数是下降的,并且之前的最后一个数小于  。我们可以证明, i-1 之前的最后两个下降的数一定满足:第二个数  是小于  的,因为如果  ,那么 j 到 i 之间的数一定是单调下降的,否则存在更长的子序列,那么就和  矛盾了。综上,取的话  更新为  。
  • : 同样考虑最后两个数上升还是下降,分析和上面一样。

综上考虑,时间复杂度可以降为  ,空间复杂度是  。

动态规划+空间优化

在上面优化的基础上,我们还可以观察到,每一次  其实只会用到  ,所以我们只需要保存当前和前一时刻的状态就行了,空间复杂度可以降为  。

贪心法

其实这题还可以直接贪心做,考虑一段连续的上升序列,最优子序列一定是包括了首尾两个数的,因为首是最小的数,选了它才能给前一个数留出更大的上升空间,而尾是最大的数,选了它才能给下一个数留出更多的下降空间。

所以我们贪心的扫描一遍数组,遇到上升或者下降的转折点就选取这个数。而如果数组不升不降,也就是不变的话,就不用管它,因为这些相同的数里面只需要选取一个就行了。

时间复杂度是  ,空间复杂度是  。

代码

动态规划(c++)

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n = nums.size();
        if (n <= 1) return n;
        int dp[n][2], res = 1;
        memset(dp, 0, sizeof dp);
        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[j] != nums[i]) {
                    int s = nums[j] < nums[i];
                    dp[i][s] = max(dp[i][s], dp[j][s^1]+1);
                }
            }
            res = max(res, dp[i][0]);
            res = max(res, dp[i][1]);
        }
        return res;
    }
};

动态规划+时间优化(c++)

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n = nums.size();
        if (n <= 1) return n;
        int dp[n][2];
        memset(dp, 0, sizeof dp);
        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < n; ++i) {
            if (nums[i] == nums[i-1]) {
                dp[i][0] = dp[i-1][0];
                dp[i][1] = dp[i-1][1];
            } else {
                int s = nums[i] > nums[i-1];
                dp[i][s] = max(dp[i-1][s], dp[i-1][s^1] + 1);
                dp[i][s^1] = dp[i-1][s^1];
            }
        }
        return max(dp[n-1][0], dp[n-1][1]);
    }
};

动态规划+空间优化(c++)

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n = nums.size();
        if (n <= 1) return n;
        int dp[2][2];
        memset(dp, 0, sizeof dp);
        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < n; ++i) {
            if (nums[i] == nums[i-1]) {
                dp[1][0] = dp[0][0];
                dp[1][1] = dp[0][1];
            } else {
                int s = nums[i] > nums[i-1];
                dp[1][s] = max(dp[0][s], dp[0][s^1]+1);
                dp[1][s^1] = dp[0][s^1];
                swap(dp[0][s], dp[1][s]);
                swap(dp[0][s^1], dp[1][s^1]);
            }
        }
        return max(dp[0][0], dp[0][1]);
    }
};

贪心(c++)

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n = nums.size();
        if (n <= 1) return n;
        int res = 1, pre_ord = -1;
        for (int i = 1; i < n; ++i) {
            if (nums[i] == nums[i-1]) continue;
            int ord = nums[i] > nums[i-1];
            if (ord != pre_ord) res++;
            pre_ord = ord;
        }
        return res;
    }
};

后记

鼠年快乐,新年献给大家的第一道题,尽量写的详细一点。

官方题解没有严谨的证明,虽然方法也是这 5 种,但是没有说清楚,不能令人信服。

相关文章
|
27天前
|
存储 C++ 索引
最长连续序列(每天刷力扣hot100系列)
本题使用哈希表法求最长连续序列。利用unordered_set存储去重元素,遍历集合时仅当num-1不存在时才作为起点向后扩展,统计连续长度,时间复杂度O(n),空间复杂度O(n)。相比unordered_map更高效,因无需存储值。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
11天前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
4月前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
4月前
|
算法 数据安全/隐私保护
基于混沌序列和小波变换层次化编码的遥感图像加密算法matlab仿真
本项目实现了一种基于小波变换层次化编码的遥感图像加密算法,并通过MATLAB2022A进行仿真测试。算法对遥感图像进行小波变换后,利用Logistic混沌映射分别对LL、LH、HL和HH子带加密,完成图像的置乱与扩散处理。核心程序展示了图像灰度化、加密及直方图分析过程,最终验证加密图像的相关性、熵和解密后图像质量等性能指标。通过实验结果(附图展示),证明了该算法在图像安全性与可恢复性方面的有效性。
|
4月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
160 1
|
4月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。