7.5最小生成树
引用文章:图解:什么是最小生成树? - 知乎 (zhihu.com)
7.5.1生成树的定义
一个连通图的生成树是一个极小的连通子图,它包含图中全部的n个顶点,但只有构成一棵树的n-1条边。
可以看到一个包含3个顶点的完全图可以产生3颗生成树。对于包含n个顶点的无向完全图最多包含 颗生成树。比如上图中包含3个顶点的无向完全图,生成树的个数为:
7.5.2生成树的属性
- 一个连通图可以有多个生成树;
- 一个连通图的所有生成树都包含相同的顶点个数和边数;
- 生成树当中不存在环;
- 移除生成树中的任意一条边都会导致图的不连通, 生成树的边最少特性;
- 在生成树中添加一条边会构成环。
- 对于包含n个顶点的连通图,生成树包含n个顶点和n-1条边;
- 对于包含n个顶点的无向完全图最多包含 颗生成树。颗生成树。
生成树我们知道了,下面我们来看看最小生成树
所谓一个 带权图 的最小生成树,就是原图中边的权值最小的生成树
通过定义我们知道,最小生成树其实是和带权图联系到一起的,如果是非带权图,那他们只存在生成树,我们来看看例子
上图中,原来的带权图可以生成左侧的两个最小生成树,这两颗最小生成树的权值之和最小,且包含原图中的所有顶点。
那么如何从图中得到最小生成树呢?
最小生成树算法有很多,其中最经典的就是克鲁斯卡尔(Kruskal)算法和 普里姆(Prim)算法,也是我们考试、面试当中经常遇到的两个算法。