循环神经网络实战案例——实现文本情感分类

简介: 循环神经网络实战案例——实现文本情感分类

循环神经网络实现文本情感分类


目标


  1. 知道LSTM和GRU的使用方法及输入输出的格式
  2. 能够应用LSTM和GRU实现文本情感分类


1. Pytorch中LSTM和GRU模块使用


1.1 LSTM介绍


LSTM和GRU都是由torch.nn提供


通过观察文档,可知LSMT的参数,


torch.nn.LSTM(input_size,hidden_size,num_layers,batch_first,dropout,bidirectional)


  1. input_size :输入数据的形状,即embedding_dim
  2. hidden_size:隐藏层神经元的数量,即每一层有多少个LSTM单元
  3. num_layer :即RNN的中LSTM单元的层数
  4. batch_first:默认值为False,输入的数据需要[seq_len,batch,feature],如果为True,则为[batch,seq_len,feature]
  5. dropout:dropout的比例,默认值为0。dropout是一种训练过程中让部分参数随机失活的一种方式,能够提高训练速度,同时能够解决过拟合的问题。这里是在LSTM的最后一层,对每个输出进行dropout
  6. bidirectional:是否使用双向LSTM,默认是False


实例化LSTM对象之后,不仅需要传入数据,还需要前一次的h_0(前一次的隐藏状态)和c_0(前一次memory)


即:lstm(input,(h_0,c_0))


LSTM的默认输出为output, (h_n, c_n)


  1. output:(seq_len, batch, num_directions * hidden_size)—>batch_first=False
  2. h_n:(num_layers * num_directions, batch, hidden_size)
  3. c_n: (num_layers * num_directions, batch, hidden_size)


1.2 LSTM使用示例


假设数据输入为 input ,形状是[10,20],假设embedding的形状是[100,30]

则LSTM使用示例如下:

batch_size =10
seq_len = 20
embedding_dim = 30
word_vocab = 100
hidden_size = 18
num_layer = 2
#准备输入数据
input = torch.randint(low=0,high=100,size=(batch_size,seq_len))
#准备embedding
embedding  = torch.nn.Embedding(word_vocab,embedding_dim)
lstm = torch.nn.LSTM(embedding_dim,hidden_size,num_layer)
#进行mebed操作
embed = embedding(input) #[10,20,30]
#转化数据为batch_first=False
embed = embed.permute(1,0,2) #[20,10,30]
#初始化状态, 如果不初始化,torch默认初始值为全0
h_0 = torch.rand(num_layer,batch_size,hidden_size)
c_0 = torch.rand(num_layer,batch_size,hidden_size)
output,(h_1,c_1) = lstm(embed,(h_0,c_0))
#output [20,10,1*18]
#h_1 [2,10,18]
#c_1 [2,10,18]


1.3 GRU的使用示例


GRU模块torch.nn.GRU,和LSTM的参数相同,含义相同,具体可参考文档


但是输入只剩下gru(input,h_0),输出为output, h_n


其形状为:


  1. output:(seq_len, batch, num_directions * hidden_size)
  2. h_n:(num_layers * num_directions, batch, hidden_size)


大家可以使用上述代码,观察GRU的输出形式


1.4 双向LSTM


如果需要使用双向LSTM,则在实例化LSTM的过程中,需要把LSTM中的bidriectional设置为True,同时h_0和c_0使用num_layer*2


观察效果,输出为

batch_size =10 #句子的数量
seq_len = 20  #每个句子的长度
embedding_dim = 30  #每个词语使用多长的向量表示
word_vocab = 100  #词典中词语的总数
hidden_size = 18  #隐层中lstm的个数
num_layer = 2  #多少个隐藏层
input = torch.randint(low=0,high=100,size=(batch_size,seq_len))
embedding  = torch.nn.Embedding(word_vocab,embedding_dim)
lstm = torch.nn.LSTM(embedding_dim,hidden_size,num_layer,bidirectional=True)
embed = embedding(input) #[10,20,30]
#转化数据为batch_first=False
embed = embed.permute(1,0,2) #[20,10,30]
h_0 = torch.rand(num_layer*2,batch_size,hidden_size)
c_0 = torch.rand(num_layer*2,batch_size,hidden_size)
output,(h_1,c_1) = lstm(embed,(h_0,c_0))
In [135]: output.size()
Out[135]: torch.Size([20, 10, 36])
In [136]: h_1.size()
Out[136]: torch.Size([4, 10, 18])
In [137]: c_1.size()
Out[137]: torch.Size([4, 10, 18])


在单向LSTM中,最后一个time step的输出的前hidden_size个和最后一层隐藏状态h_1的输出相同,那么双向LSTM呢?


双向LSTM中:


output:按照正反计算的结果顺序在第2个维度进行拼接,正向第一个拼接反向的最后一个输出


hidden state:按照得到的结果在第0个维度进行拼接,正向第一个之后接着是反向第一个


前向的LSTM中,最后一个time step的输出的前hidden_size个和最后一层向前传播h_1的输出相同

  • 示例:
#-1是前向LSTM的最后一个,前18是前hidden_size个
In [188]: a = output[-1,:,:18]  #前项LSTM中最后一个time step的output
In [189]: b = h_1[-2,:,:]  #倒数第二个为前向
In [190]: a.size()
Out[190]: torch.Size([10, 18])
In [191]: b.size()
Out[191]: torch.Size([10, 18])
In [192]: a == b
Out[192]:
tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
       dtype=torch.uint8)


后向LSTM中,最后一个time step的输出的后hidden_size个和最后一层后向传播的h_1的输出相同

  • 示例
#0 是反向LSTM的最后一个,后18是后hidden_size个
In [196]: c = output[0,:,18:]  #后向LSTM中的最后一个输出
In [197]: d = h_1[-1,:,:] #后向LSTM中的最后一个隐藏层状态
In [198]: c == d
Out[198]:
tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
       dtype=torch.uint8)


1.5 LSTM和GRU的使用注意点


  1. 第一次调用之前,需要初始化隐藏状态,如果不初始化,默认创建全为0的隐藏状态
  2. 往往会使用LSTM or GRU 的输出的最后一维的结果,来代表LSTM、GRU对文本处理的结果,其形状为[batch, num_directions*hidden_size]。
  • 并不是所有模型都会使用最后一维的结果
  • 如果实例化LSTM的过程中,batch_first=False,则output[-1] or output[-1,:,:]可以获取最后一维
  • 如果实例化LSTM的过程中,batch_first=True,则output[:,-1,:]可以获取最后一维
  1. 如果结果是(seq_len, batch_size, num_directions * hidden_size),需要把它转化为(batch_size,seq_len, num_directions * hidden_size)的形状,不能够不是view等变形的方法,需要使用output.permute(1,0,2),即交换0和1轴,实现上述效果
  2. 使用双向LSTM的时候,往往会分别使用每个方向最后一次的output,作为当前数据经过双向LSTM的结果
  • 即:torch.cat([h_1[-2,:,:],h_1[-1,:,:]],dim=-1)
  • 最后的表示的size是[batch_size,hidden_size*2]
  1. 上述内容在GRU中同理


2. 使用LSTM完成文本情感分类


在前面,我们使用了word embedding去实现了toy级别的文本情感分类,那么现在我们在这个模型中添加上LSTM层,观察分类效果。


为了达到更好的效果,对之前的模型做如下修改


  1. MAX_LEN = 200
  2. 构建dataset的过程,把数据转化为2分类的问题,pos为1,neg为0,否则25000个样本完成10个类别的划分数据量是不够的
  3. 在实例化LSTM的时候,使用dropout=0.5,在model.eval()的过程中,dropout自动会为0


2.1 修改模型


class IMDBLstmmodel(nn.Module):
    def __init__(self):
        super(IMDBLstmmodel,self).__init__()
        self.hidden_size = 64
        self.embedding_dim = 200
        self.num_layer = 2
        self.bidriectional = True
        self.bi_num = 2 if self.bidriectional else 1
        self.dropout = 0.5
        #以上部分为超参数,可以自行修改
        self.embedding = nn.Embedding(len(ws),self.embedding_dim,padding_idx=ws.PAD) #[N,300]
        self.lstm = nn.LSTM(self.embedding_dim,self.hidden_size,self.num_layer,bidirectional=True,dropout=self.dropout)
        #使用两个全连接层,中间使用relu激活函数
        self.fc = nn.Linear(self.hidden_size*self.bi_num,20)
        self.fc2 = nn.Linear(20,2)
    def forward(self, x):
        x = self.embedding(x)
        x = x.permute(1,0,2) #进行轴交换
        h_0,c_0 = self.init_hidden_state(x.size(1))
        _,(h_n,c_n) = self.lstm(x,(h_0,c_0))
        #只要最后一个lstm单元处理的结果,这里多去的hidden state
        out = torch.cat([h_n[-2, :, :], h_n[-1, :, :]], dim=-1)
        out = self.fc(out)
        out = F.relu(out)
        out = self.fc2(out)
        return F.log_softmax(out,dim=-1)
    def init_hidden_state(self,batch_size):
        h_0 = torch.rand(self.num_layer * self.bi_num, batch_size, self.hidden_size).to(device)
        c_0 = torch.rand(self.num_layer * self.bi_num, batch_size, self.hidden_size).to(device)
        return h_0,c_0


2.2 完成训练和测试代码


为了提高程序的运行速度,可以考虑把模型放在gup上运行,那么此时需要处理一下几点:


  1. device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  2. model.to(device)
  3. 除了上述修改外,涉及计算的所有tensor都需要转化为CUDA的tensor
  4. 初始化的h_0,c_0
  5. 训练集和测试集的input,traget
  6. 在最后可以通过tensor.cpu()转化为torch的普通tensor


train_batch_size = 64
test_batch_size = 5000
# imdb_model = IMDBModel(MAX_LEN) #基础model
imdb_model = IMDBLstmmodel().to(device) #在gpu上运行,提高运行速度
# imdb_model.load_state_dict(torch.load("model/mnist_net.pkl"))
optimizer = optim.Adam(imdb_model.parameters())
criterion = nn.CrossEntropyLoss()
def train(epoch):
    mode = True
    imdb_model.train(mode)
    train_dataloader =get_dataloader(mode,train_batch_size)
    for idx,(target,input,input_lenght) in enumerate(train_dataloader):
        target = target.to(device)
        input = input.to(device)
        optimizer.zero_grad()
        output = imdb_model(input)
        loss = F.nll_loss(output,target) #traget需要是[0,9],不能是[1-10]
        loss.backward()
        optimizer.step()
        if idx %10 == 0:
            pred = torch.max(output, dim=-1, keepdim=False)[-1]
            acc = pred.eq(target.data).cpu().numpy().mean()*100.
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\t ACC: {:.6f}'.format(epoch, idx * len(input), len(train_dataloader.dataset),
                       100. * idx / len(train_dataloader), loss.item(),acc))
            torch.save(imdb_model.state_dict(), "model/mnist_net.pkl")
            torch.save(optimizer.state_dict(), 'model/mnist_optimizer.pkl')
 def test():
    mode = False
    imdb_model.eval()
    test_dataloader = get_dataloader(mode, test_batch_size)
    with torch.no_grad():
        for idx,(target, input, input_lenght) in enumerate(test_dataloader):
            target = target.to(device)
            input = input.to(device)
            output = imdb_model(input)
            test_loss  = F.nll_loss(output, target,reduction="mean")
            pred = torch.max(output,dim=-1,keepdim=False)[-1]
            correct = pred.eq(target.data).sum()
            acc = 100. * pred.eq(target.data).cpu().numpy().mean()
            print('idx: {} Test set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(idx,test_loss, correct, target.size(0),acc))
 if __name__ == "__main__":
    test()
    for i in range(10):
        train(i)
        test()


2.3 模型训练的最终输出


...
Train Epoch: 9 [20480/25000 (82%)]  Loss: 0.017165   ACC: 100.000000
Train Epoch: 9 [21120/25000 (84%)]  Loss: 0.021572   ACC: 98.437500
Train Epoch: 9 [21760/25000 (87%)]  Loss: 0.058546   ACC: 98.437500
Train Epoch: 9 [22400/25000 (90%)]  Loss: 0.045248   ACC: 98.437500
Train Epoch: 9 [23040/25000 (92%)]  Loss: 0.027622   ACC: 98.437500
Train Epoch: 9 [23680/25000 (95%)]  Loss: 0.097722   ACC: 95.312500
Train Epoch: 9 [24320/25000 (97%)]  Loss: 0.026713   ACC: 98.437500
Train Epoch: 9 [15600/25000 (100%)] Loss: 0.006082   ACC: 100.000000
idx: 0 Test set: Avg. loss: 0.8794, Accuracy: 4053/5000 (81.06%)
idx: 1 Test set: Avg. loss: 0.8791, Accuracy: 4018/5000 (80.36%)
idx: 2 Test set: Avg. loss: 0.8250, Accuracy: 4087/5000 (81.74%)
idx: 3 Test set: Avg. loss: 0.8380, Accuracy: 4074/5000 (81.48%)
idx: 4 Test set: Avg. loss: 0.8696, Accuracy: 4027/5000 (80.54%)


可以看到模型的测试准确率稳定在81%左右。


目录
相关文章
|
16天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
60 6
|
4天前
|
网络协议 网络安全 网络虚拟化
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算。通过这些术语的详细解释,帮助读者更好地理解和应用网络技术,应对数字化时代的挑战和机遇。
27 3
|
9天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
29 3
|
17天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
40 4
|
17天前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
39 1
|
18天前
|
网络协议 安全 NoSQL
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
|
18天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
29天前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
34 3
|
16天前
|
网络协议 调度 开发者
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第27天】本文介绍了Python网络编程中的Twisted框架,重点讲解了其异步IO处理机制。通过反应器模式,Twisted能够在单线程中高效处理多个网络连接。文章提供了两个实战示例:一个简单的Echo服务器和一个HTTP服务器,展示了Twisted的强大功能和灵活性。
28 0
|
18天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9-2):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!