CIFAR-10数据集
CIFAR-10数据集(加拿大高级研究所,10类)是 Tiny Images 数据集的一个子集,由60000个32x32彩色图像组成。这些图片被贴上了10个相互排斥类别的标签: 飞机、汽车(但不包括卡车或皮卡)、鸟、猫、鹿、狗、青蛙、马、船和卡车(但不包括皮卡)。每个班有6000张图片,每个班有5000张训练图片和1000张测试图片。
ImageNet数据集
根据 WordNet 层次结构,ImageNet 数据集包含14,197,122个带注释的图像。自2010年以来,该数据集被用于 ImageNet 大规模视觉识别挑战(ILSVRC) ,一个图像分类和目标检测的基准。公开发布的数据集包含一组手动注释的训练图像。还发布了一组测试映像,并且保留了手动注释。ILSVRC 注释可以分为两类: (1)图像级注释的二进制标签的存在或不存在的对象类在图像中,例如,“有汽车在这个图像”,但“没有老虎”,和(2)对象级注释的一个紧密的边界框和类标签周围的对象实例在图像中,例如,“有一个螺丝刀居中的位置(20,25) ,宽度为50像素,高度为30像素”。ImageNet 项目不拥有图像的版权,因此只提供图像的缩略图和 URL。
COCO (Microsoft Common Objects in Context)数据集
#图像分割#目标检测用!!!!!!!!!!!
MNIST数据集
MNIST 数据库(修改后的国家标准和技术研究所数据库)是一个手写数字的大集合。它有一套包含60,000个例子的训练集和一套包含10,000个例子的测试集。它是一个较大的 NIST 特殊数据库3(美国人口普查局的雇员编写的数字)和特殊数据库1(高中生编写的数字)的子集,其中包含手写数字的单色图像。这些数字已经尺寸归一化,并在固定大小的图像中居中。来自 NIST 的原始黑白(双层)图像经过了尺寸标准化,以适应20x20像素的盒子,同时保留了它们的高宽比。由于归一化算法所采用的抗混叠技术,得到的图像含有灰度。通过计算像素质量中心,并将图像平移以使该点位于28x28视场的中心,使图像集中在28x28图像中心。
CIFAR-100数据集
CIFAR-100数据集(加拿大高级研究所,100个类)是Tiny Images数据集的子集,由60000张32x32彩色图像组成。CIFAR-100 中的 100 个类被分为 20 个超类。每个班级有600张图片。每个图像都带有一个“精细”标签(它所属的类)和一个“粗”标签(它所属的超类)。每类有 500 张训练图像和 100 张测试图像。
确定图像是否属于某个类的标准如下:
类名应该在“这张图片中有什么”这个问题的可能答案列表中名列前茅。
图像应该是照片般逼真的。贴标机被指示拒绝线条图。
图像应仅包含类所引用对象的一个突出实例。
该物体可能被部分遮挡或从不寻常的角度看到,只要其身份对贴标者仍然清晰可见。
Cityscapes数据集
城市景观是一个大型数据库,专注于城市街景的语义理解。它为 30 个类(平面、人类、车辆、构造、对象、自然、天空和虚空)提供语义、实例和密集像素注释。该数据集由大约5000张精细注释图像和20000张粗注释图像组成。在几个月,白天和良好的天气条件下,在50个城市捕获了数据。它最初被录制为视频,因此手动选择帧以具有以下功能:大量动态对象,不同的场景布局和不同的背景。