《Java数据结构基础》单链表的手动实现

简介: 《Java数据结构基础》单链表的手动实现

前言:

前几天中,我们学习了顺序表,已经深知其优缺点,如下:

优点:

  • 连续物理空间,方便下标随机访问

缺点:

  1. 插入数据,空间不足时要扩容,扩容有性能消耗
  2. 头部或者中间位置插入删除数据,需要挪动数据,效率较低

基于顺序表的缺点,就设计出了链表结构。正文开始 :


一、单链表的概念

📝链表是一种物理存储结构上非连续、非顺序的存储结构,整个链表就是通过对各个结点地址的链式储存来实现的 。(链表就是由一个一个结点所组成的)

链表的结构有点类似于火车,火车的每一节车厢都由插销,和钩子链接起来

fcd64e0856744b7b89b398647bf0fa32.png

那么怎么这一个一个的结点是怎样链接起来呢?在Java中他是通过引用所指向的地址来链接起来的。

什么意思呢?就是说链表的每一个结点元素都分为连两部分,一部分用来储存数值,另一部分来储存地址。

储存的是谁的地址呀!就是下一个结点的地址

比如说在链表中有三个结点,那么他们之间的关系是这样的

cc1a7592fef840ac8d80dac3def8bfed.png

既然说了,链表是由一个一个的结点组成的,那么在Java中结点是怎样定义的呢?


我们从上面也可以发现在每一个结点都是一个独立的小个体,我们不妨把他抽象为一个内部类,并放到单链表这个类的里面。这样我们就可以在单链表这个类里面使用我们结点这个小个体,并尝试把它串起来。

💖温馨提示:本篇文章所讨论的单链表用到了两个文件:

  1. 1.单链表的构建文件MyLinkList.java
  2. 2.单链表的测试文件hLinkListTest.java


二、链表的创建:

public class MyLinkList {
    ListNode head = null; // 声明链表中的头结点
    //创建单链表结构,将链表的每一个结点都定义成一个内部类
    public class ListNode {
        public int val;        // 该结点的数值域,储存该结点的数值
        public ListNode next; // 该结点的next域,储存的是下一个结点的地址,两个结点间正是通过next域产生关联
        public ListNode(int val) { // 构造方法,给新生成的结点赋值,同时next默认为null
            this.val = val;
        }
    }
}

如图所示:我们定义了一个MyLinkList(单链表)类,同时在该类中还定义了一个内部类(结点类)。这样就创建了一个基本的链表结构。

但光这样肯定是不行的,我们对链表有一些基本的操作方法如下:

// 链表初始化
    public ListNode listInit() { }
    // 打印链表
    public void linkedListPrint() { }
    // 获取链表长度
    public int getSize() { return -1; }
    //判断该链表是否为空
    private void isEmpty() { }


🌰链表的初始化:

首先我们要做的就是对我们的链表进行初始化的操作,那么怎么初始化呢?当然是创建一些结点,并在每一个结点中都把下一个结点的地址给储存起来,然后相互链接起来的呀

// 链表初始化
    public ListNode listInit() {
        Scanner in = new Scanner(System.in);
        System.out.print("请输入你要构建的链表的初始长度:");
        int n = in.nextInt();
        System.out.print("请输入链表第1个元素的值:");
        int firstVal = in.nextInt();  //
        this.head = new ListNode(firstVal); // 创建链表的第一个结点,将我们链表的头结点引用head指向链表的第一个结点
        ListNode cur = head; // 创建一个引用cur去完成链表的初始化(头节点是整个链表的灵魂,不能直接使用,避免丢失链表)
        for (int i = 1; i < n; i++) {
            System.out.print("请输入链表第" + (i + 1) + "个元素的值:");
            int val = in.nextInt();
            ListNode node = new ListNode(val);
            // 当前结点的next域存放的是对下一个结点的引用变量node,node储存的就是下一个结点的地址
            cur.next = node;  // 当前结点的next域存放的是对下一个结点的引用变量node
            cur = node;       // 将当前结点移向下一个结点
        }
        return this.head; // 返回该链表的头结点
    }


如图所示:


94d9e5f9749b46a590a6db49ef2d3a64.png

对于结点的链接:用的就是cur这个结点引用变量

当我们的cur引用也指向第一个结点后,cur.next代表的就是第一个结点的next域,只要next域里储存了下一个结点的地址,这两个结点就链接起来了。


从上图我们也可以知道,我们的node引用是指向新建的第二个结点的,也就是说node里就存放的就是我们第二个结点的地址,所以当我们cur.next = node时,其实就是把这两个结点链接起来了

773799f839bc41e480edc90d894144f7.png

那要是再来个第三个结点node呢?

不要着急,我们只需要让cur = cur.next,cur.next = node就完成了结点间的链接

当cur = cur.next 后,引用变量cur现在所引用的就变成了第二个结点,那么cur.next = node的作用就是将第三个结点的地址储存到了第二个结点的next域里

a4e59f466367475ab26d1e10eeffcd48.png

接下第四、第五个结点也大致是这样的操作,嘻嘻。


你可以会问:为啥非得要再定义一个结点的引用变量cur呢?我之间用head头结点引用来不断的改变指向,完成结点间的链接,不可以吗?


可以是可以,但你有没有想过,如果用head来操作结点的化,你在初始化链表后head还指向头节点吗?你还能找到头结点吗?


🌰打印链表:

  // 打印链表
    public void linkedListPrint() {
        ListNode cur = head;  // 创建一个引用cur去完成链表的遍历打印(头节点是整个链表的灵魂,不能直接使用,避免丢失链表)
        while (cur != null)  {
            System.out.print(cur.val + " "); // cur.val表示的就是当前结点的数值
            cur = cur.next;  // 打印完了当前结点,cur继续指向下一个结点,完成对下一个结点的打印
        }
        System.out.println();
    }


🌰获取链表长度:

  // 打印链表
    public void linkedListPrint() {
        ListNode cur = head;  // 创建一个引用cur去完成链表的遍历打印(头节点是整个链表的灵魂,不能直接使用,避免丢失链表)
        while (cur != null)  {
            System.out.print(cur.val + " "); // cur.val表示的就是当前结点的数值
            cur = cur.next;  // 打印完了当前结点,cur继续指向下一个结点,完成对下一个结点的打印
        }
        System.out.println();
    }

🌰 判断链表是否为空

/**
     * 判断该链表是否为空
     * 为空就抛出异常,终止程序
     */
    private void isEmpty() { // 判断链表是否为空,只是该类中使用,所有
        if (head == null) {
            System.out.println("该链表为空!!!");
            throw new NullPointerException();
            // 如果抛出的是 RunTimeException 或者 RunTimeException 的子类,则可以不用处理,直接交给JVM来处理
            //异常一旦抛出,其后的代码就不会执行,相当于就直接return了
        }
    }

💖好了,现在我们就得到一个基本的链表了

那么接下来就是对链表的操作了,那么一起来看看对链表都有那些操作吧!

    // 在在链表头插入元素
    public void addHead(int val) { }
    //在链表的指定下标中插入元素
    public void addIndex(int index, int val) { }
    // 删除头节点
    public void deleteHead() { }
    //删除指定下标的元素
    public void deleteIndex(int index) { }
    // 删除链表中所有数值是key的元素
    public void deleteKey(int key) { }
    // 判断元素key是否在当前链表中
    public boolean contains(int key) { return false; }

哈哈,增删查找都有,还挺全的。

那么接下来就让我们来看看这些操作是怎么实现的吧!


 

三、新增结点

🌰头插

// 在在链表头插入元素
    public void addHead(int val) {
        ListNode node = new ListNode(val); // 新插入的结点node
        node.next = head;    // 直接将该结点node变成新的头结点
        head = node;
    }

🌰指定下标插入

/**
     *  在链表的指定下标中插入元素
     * @param index 所指定的下标
     * @param val 元素值
     */
    public void addIndex(int index, int val) {
        if (index < 0 || index > getSize()) { // 注意这里index == getSize也是可以的,此时相当于是在链表的结尾新增一个元素
            System.out.println("index下标不合法");
            return;
        }
        ListNode node = new ListNode(val);  // 要新增的那个结点node
        if (index == 0) { // 当新增的是头结点的时候
            addHead(val);
            return;
        }
        ListNode cur = head;
        for (int i = 0; i < index - 1; ++i) { // 这种情况包含了新增尾结点的时候
            cur = cur.next;                 //  通过循环,让cur指向—>新增指定下标所对应的元素的前一个元素
        }
        node.next = cur.next;  // 把该结点插入链表,且放到指定下标中,从后往前走,先将node结点指向下一个结点
        cur.next = node;
    }

举个栗子

fdb6255cc20549f1b285b408db89b725.png

🍑比如现在我们想在2下标插入我们新建的结点node,那么我们首先要找到要插入的结点的前一个结点->也就是下标为1的那个结点

然后呢🤔


你可能会说:这不就简单了!直接下标为1的结点的next储存新建的结点node的地址:0x7777,然后新建的node结点再指向我们原来下标为2的结点不就行了吗?

这样真的可以吗?一起来看看吧!


上面所说的就是这样的伪代码:

下标为1的结点.next = node;
node.next = 下标为2的结点;
但这有一个问题:
首先在一开始的链表中存在这样的关系:
下标为1的结点.next = 下标为2的结点
那么就在上面的伪代码中node.next = 下标为2的结点;
就相等于是:node.next = 下标为1的结点.next;
但问题是此时的:下标为1的结点.next = node;
即node.next = node;这合理吗?不合理,所以我们要从后向前走
就是:
node.next = 下标为2的结点;
下标为1的结点.next = node;

所以说上面我们的那个想法是不合适的😁

66ce7a74338d46e4a284bd8501064468.png

四、删除结点:

🌰头删

// 删除头节点
    public void deleteHead() {
        isEmpty(); // 检查一下链表是否为空,为空的化就会抛出异常来终止程序
        // 如果head头节点不是链表的最后一个元素时,直接将head的下一个结点变成新的头结点,原来的head头结点就被系统自动回收了
        if (head.next != null) {
            this.head = this.head.next;
        }
        else this.head = null;  // 当head结点是链表的最后一个元素时
    }

🌰指定下标的删除

在链表中,想要删除一个结点其实就是让该结点从链表中分离出来(没有其他任何的结点指向他 )

 比如我们想删除1下标的结点,只需要找到1下标的前一个结点,也就是0下标。然后将0下标的next域里不再储存1下标的结点地址,而改成储存1下标的下一个结点->2下标的结点地址。这样就相等于1下标的结点被孤立下来了(就相等于是删除了)


/**
     * 删除指定下标的元素
     * @param index 要删除的指定元素下标
     */
    public void deleteIndex(int index) {
        isEmpty(); // 检查一下链表是否为空,为空的化就会抛出异常来终止程序
        if (index < 0 || index >= getSize()) { // 注意此时index不能等于getSize因为是删除不是新增,下标index最大是getSize - 1
            System.out.println("要删除的下标不合法!删除失败!!");
            return; // 直接返回
        }
        if (index == 0) {
            deleteHead(); // 当index等于0时,相当于是删除的是头节点
            return;
        }
        ListNode cur = head;
        // 创建一个引用cur去完成循环(头节点是整个链表的灵魂,不能直接使用,避免丢失链表)
        // 通过循环,让cur指向—>要删除元素的前一个元素
        for (int i = 0; i < index - 1; ++i) { // 注意这里不能是i < index; 如果是i < index的话,cur就指向当前要删除的那个元素了
            cur = cur.next;
        }
        cur.next = cur.next.next;
    }

d28613ac63334b6d8d222ed2c32785a1.png

🌰删除链表中的指定元素

// 删除链表中所有数值是key的元素
    public void deleteKey(int key) {
        isEmpty(); // 检查一下链表是否为空,为空的化就会抛出异常来终止程序
        while (this.head.val == key && head != null) {  // 当 head.val == key,相当于删除头节点
            deleteHead();            // 因为是删除链表中所有数值是key的元素,所以删除一个后不能直接返回,还要继续遍历
            // 处理特殊情况,当链表的的最后一个元素被删除时
            if (head == null) {
                return;  // 直接return就好,此时head为空,如果再进行this.head.val == key的判断就会发生空指针异常
            }
        }
        ListNode cur = head;
        // 创建一个引用cur去完成链表的遍历(头节点是整个链表的灵魂,不能直接使用,避免丢失链表)
        while (cur.next != null) {
            if (cur.next.val == key) {
                cur.next = cur.next.next; // 包含了删除尾结点的情况
            }
            else {
                cur = cur.next; // cur引用指向下一个结点,以此来完成遍历链表
            }
        }

五、单链表查找:

/**
     * 判断元素key是否在当前链表中
     * @param key
     * @return 在链表中返回true,不在返回false
     */
    public boolean contains(int key) {
        ListNode cur = this.head;
        while (cur != null) {
            if (cur.val == key) {
                return true;
            }
            else {
                cur = cur.next;
            }
        }
        return false;
    }

六、附录

📝总代码

//shift+回车,光标在任意位置都能换到下一行
// crl + z返回上一步,如果自己不小心误删了代码可以用这个快捷键找回刚才误删的代码
//import java.util.List;
import java.util.Scanner;
/**
 * 实现单链表的代码
 */
//变量名,方法名首字母小写,如果名称由多个单词组成,除首字母外的每个单词的首字母都要大写.
// 包名小写
public class MyLinkList {
    ListNode head = null; // 声明链表中的头结点
    //创建单链表结构,将链表的每一个结点都定义成一个内部类
    public class ListNode {
        public int val;        // 该结点的数值域,储存该结点的数值
        public ListNode next; // 该结点的next域,储存的是下一个结点的地址,两个结点间正是通过next域产生关联
        public ListNode(int val) { // 构造方法,给新生成的结点赋值,同时next默认为null
            this.val = val;
        }
    }
    // 链表初始化
    public ListNode listInit() {
        Scanner in = new Scanner(System.in);
        System.out.print("请输入你要构建的链表的初始长度:");
        int n = in.nextInt();
        System.out.print("请输入链表第1个元素的值:");
        int firstVal = in.nextInt();  //
        this.head = new ListNode(firstVal); // 创建链表的第一个结点,将我们链表的头结点指向链表的第一个结点
        ListNode cur = head; // 创建一个引用cur去完成链表的初始化(头节点是整个链表的灵魂,不能直接使用,避免丢失链表)
        for (int i = 1; i < n; i++) {
            System.out.print("请输入链表第" + (i + 1) + "个元素的值:");
            int val = in.nextInt();
            ListNode node = new ListNode(val);
            cur.next = node;
            cur = node;
        }
        return this.head; // 返回该链表的头结点
    }
    // 打印链表
    public void linkedListPrint() {
        ListNode cur = head;  // 创建一个引用cur去完成链表的遍历打印(头节点是整个链表的灵魂,不能直接使用,避免丢失链表)
        while (cur != null)  {
            System.out.print(cur.val + " "); // cur.val表示的就是当前结点的数值
            cur = cur.next;  // 打印完了当前结点,cur继续指向下一个结点,完成对下一个结点的打印
        }
        System.out.println();
    }
    // 获取链表长度
    public int getSize() {
        int count = 0;
        ListNode cur = this.head;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        return count;
    }
    /**
     * 判断该链表是否为空
     * 为空就抛出异常,终止程序
     */
    private void isEmpty() { // 判断链表是否为空,只是该类中使用,所有
        if (head == null) {
            System.out.println("该链表为空!!!");
            throw new NullPointerException();
            // 如果抛出的是 RunTimeException 或者 RunTimeException 的子类,则可以不用处理,直接交给JVM来处理
            //异常一旦抛出,其后的代码就不会执行,相当于就直接return了
        }
    }
    // 在在链表头插入元素
    public void addHead(int val) {
        ListNode node = new ListNode(val);
        node.next = head;
        head = node;
    }
    /**
     *  在链表的指定下标中插入元素
     * @param index 所指定的下标
     * @param val 元素值
     */
    public void addIndex(int index, int val) {
        if (index < 0 || index > getSize()) { // 注意这里index == getSize也是可以的,此时相当于是在链表的结尾新增一个元素
            System.out.println("index下标不合法");
            return;
        }
        ListNode node = new ListNode(val);  // 要新增的那个结点node
        if (index == 0) { // 当新增的是头结点的时候
            addHead(val);
            return;
        }
        ListNode cur = head;
        for (int i = 0; i < index - 1; ++i) { // 这种情况包含了新增尾结点的时候
            cur = cur.next;                 //  通过循环,让cur指向—>新增指定下标所对应的元素的前一个元素
        }
        node.next = cur.next;  // 把该结点插入链表,且放到指定下标中,从后往前走,先将node结点指向下一个结点
        cur.next = node;
    }
    // 删除头节点
    public void deleteHead() {
        isEmpty(); // 检查一下链表是否为空,为空的化就会抛出异常来终止程序
        if (head.next != null) {
            this.head = this.head.next;
        }
        else this.head = null;  // 当head结点是链表的最后一个元素时
    }
    /**
     * 删除指定下标的元素
     * @param index 要删除的指定元素下标
     */
    public void deleteIndex(int index) {
        isEmpty(); // 检查一下链表是否为空,为空的化就会抛出异常来终止程序
        if (index < 0 || index >= getSize()) { // 注意此时index不能等于getSize因为是删除不是新增,下标index最大是getSize - 1
            System.out.println("要删除的下标不合法!删除失败!!");
            return; // 直接返回
        }
        if (index == 0) {
            deleteHead(); // 当index等于0时,相当于是删除的是头节点
            return;
        }
        ListNode cur = head;
        // 创建一个引用cur去完成循环(头节点是整个链表的灵魂,不能直接使用,避免丢失链表)
        // 通过循环,让cur指向—>要删除元素的前一个元素
        for (int i = 0; i < index - 1; ++i) { // 注意这里不能是i < index; 如果是i < index的话,cur就指向当前要删除的那个元素了
            cur = cur.next;
        }
        cur.next = cur.next.next;
    }
    // 删除链表中所有数值是key的元素
    public void deleteKey(int key) {
        isEmpty(); // 检查一下链表是否为空,为空的化就会抛出异常来终止程序
        while (this.head.val == key && head != null) {  // 当 head.val == key,相当于删除头节点
            deleteHead();            // 因为是删除链表中所有数值是key的元素,所以删除一个后不能直接返回,还要继续遍历
            // 处理特殊情况,当链表的的最后一个元素被删除时
            if (head == null) {
                return;  // 直接return就好,此时head为空,如果再进行this.head.val == key的判断就会发生空指针异常
            }
        }
        ListNode cur = head;
        // 创建一个引用cur去完成链表的遍历(头节点是整个链表的灵魂,不能直接使用,避免丢失链表)
        while (cur.next != null) {
            if (cur.next.val == key) {
                cur.next = cur.next.next; // 包含了删除尾结点的情况
            }
            else {
                cur = cur.next; // cur引用指向下一个结点,以此来完成遍历链表
            }
        }
    }
    /**
     * 判断元素key是否在当前链表中
     * @param key
     * @return 在链表中返回true,不在返回false
     */
    public boolean contains(int key) {
        ListNode cur = this.head;
        while (cur != null) {
            if (cur.val == key) {
                return true;
            }
            else {
                cur = cur.next;
            }
        }
        return false;
    }
}

📝测试代码

/**
 * 对单链表进行测试的代码
 */
public class LinkListTest {
    public static void main(String[] args) {
        MyLinkList myLinkList = new MyLinkList(); // 实例化一个链表对象
        // 链表的初始化
        myLinkList.listInit();
        System.out.print("初始化链表后,链表的第一次打印:");
        myLinkList.linkedListPrint();
        System.out.println("===============");
        myLinkList.addHead(1111);
        System.out.print("头插结点1111后,链表的第二次打印:");
        myLinkList.linkedListPrint();
        myLinkList.addIndex(2, 2222);
        System.out.print("再指定下标2出插入新结点2222后,链表的第三次打印:");
        myLinkList.linkedListPrint();
        System.out.println("================");
        myLinkList.deleteIndex(2);
        System.out.print("删除指定下标2的结点2222后,链表的第四次打印:");
        myLinkList.linkedListPrint();
        myLinkList.deleteHead();
        System.out.print("删除头节点后,链表的第五次打印:");
        myLinkList.linkedListPrint();
        myLinkList.deleteKey(2);
        System.out.print("删除链表中所有值是2的结点后,链表的第六次打印:");
        myLinkList.linkedListPrint();
        System.out.print("此时的链表长度为:");
        System.out.println(myLinkList.getSize());
    }
}

💖测试结果:

a681bb47668f42b3ad6cd8eb822b81bf.png

好了,今天的有关链表内容的分享就到这里了

那么下一篇,就让我们开始链表的实战刷题演练吧!!!

fc0e0b2c6d6649839195284ce5c7172a.jpg

相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
91 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
48 1
|
2月前
|
存储 Java
告别混乱!用Java Map优雅管理你的数据结构
【10月更文挑战第17天】在软件开发中,随着项目复杂度增加,数据结构的组织和管理至关重要。Java中的Map接口提供了一种优雅的解决方案,帮助我们高效、清晰地管理数据。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,有效提升了代码质量和维护性。
93 2
|
2月前
|
存储 Java 开发者
Java Map实战:用HashMap和TreeMap轻松解决复杂数据结构问题!
【10月更文挑战第17天】本文深入探讨了Java中HashMap和TreeMap两种Map类型的特性和应用场景。HashMap基于哈希表实现,支持高效的数据操作且允许键值为null;TreeMap基于红黑树实现,支持自然排序或自定义排序,确保元素有序。文章通过具体示例展示了两者的实战应用,帮助开发者根据实际需求选择合适的数据结构,提高开发效率。
71 2
|
4天前
|
存储 缓存 安全
Java 集合江湖:底层数据结构的大揭秘!
小米是一位热爱技术分享的程序员,本文详细解析了Java面试中常见的List、Set、Map的区别。不仅介绍了它们的基本特性和实现类,还深入探讨了各自的使用场景和面试技巧,帮助读者更好地理解和应对相关问题。
23 5
|
1月前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
47 6
|
1月前
|
存储 Java 索引
Java中的数据结构:ArrayList和LinkedList的比较
【10月更文挑战第28天】在Java编程世界中,数据结构是构建复杂程序的基石。本文将深入探讨两种常用的数据结构:ArrayList和LinkedList,通过直观的比喻和实例分析,揭示它们各自的优势与局限,帮助你在面对不同的编程挑战时做出明智的选择。
|
2月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
43 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
2月前
|
存储 算法 Java
Java 中常用的数据结构
【10月更文挑战第20天】这些数据结构在 Java 编程中都有着广泛的应用,掌握它们的特点和用法对于提高编程能力和解决实际问题非常重要。
31 6
|
2月前
|
存储 Java 开发者
Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效
【10月更文挑战第19天】在软件开发中,随着项目复杂度的增加,数据结构的组织和管理变得至关重要。Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,帮助开发者告别混乱,提升代码质量。
32 1