复现扫描全能王的增强锐化

简介: 复现扫描全能王的增强锐化

扫描全能王的增强锐化其实是自适应二值化的变体。


直接用 OpenCV 的函数会让背景变花,因为背景是渐变的,直接拿均值当阈值的话,总有一些背景像素在阈值下面。所以需要将阈值乘以一个系数,比如 0.9,过滤掉所有背景。同时,因为文字的像素值很小,不受影响。

import numpy as np
from scipy import signal
def adaptive_thres(img, win=9, beta=0.9):
    if win % 2 == 0: win = win - 1
    # 边界的均值有点麻烦
    # 这里分别计算和和邻居数再相除
    kern = np.ones([win, win])
    sums = signal.correlate2d(img, kern, 'same')
    cnts = signal.correlate2d(np.ones_like(img), kern, 'same')
    means = sums // cnts
    # 如果直接采用均值作为阈值,背景会变花
    # 但是相邻背景颜色相差不大
    # 所以乘个系数把它们过滤掉
    img = np.where(img < means * beta, 0, 255)
    return img


20200313115810625.png


相关文章
|
机器学习/深度学习 运维 算法
基于卷积神经网络和手工特征注入的皮肤损伤图像异常检测:一种绕过皮肤镜图像预处理的方法
基于卷积神经网络和手工特征注入的皮肤损伤图像异常检测:一种绕过皮肤镜图像预处理的方法
121 1
|
5月前
|
人工智能 自然语言处理 测试技术
将图像自动文本化,图像描述质量更高、更准确了
【7月更文挑战第11天】AI研究提升图像文本化准确性:新框架IT融合多模态大模型与视觉专家,生成详细无幻觉的图像描述。通过三个阶段—全局文本化、视觉细节提取和重描述,实现更高质量的图像转文本。研究人员建立DID-Bench、D2I-Bench和LIN-Bench基准,展示描述质量显著提升。尽管有进步,仍面临幻觉、细节缺失及大规模处理挑战。[论文链接](https://arxiv.org/pdf/2406.07502v1)**
38 1
|
7月前
|
机器学习/深度学习 文字识别 算法
[Halcon&图像] 缺陷检测的一些思路、常规检测算法
[Halcon&图像] 缺陷检测的一些思路、常规检测算法
2036 1
|
6月前
|
机器人 人机交互 vr&ar
实战 | 实时手部关键点检测跟踪(附完整源码+代码详解)
实战 | 实时手部关键点检测跟踪(附完整源码+代码详解)
|
7月前
|
机器学习/深度学习 算法 搜索推荐
【实操】数据扩增:Retinex算法用于图像颜色恢复和对比度增强
【实操】数据扩增:Retinex算法用于图像颜色恢复和对比度增强
110 0
【实操】数据扩增:Retinex算法用于图像颜色恢复和对比度增强
|
机器学习/深度学习 编解码 算法
检测并消除瑕疵,DeSRA让真实场景超分中的GAN更加完美
检测并消除瑕疵,DeSRA让真实场景超分中的GAN更加完美
347 0
|
算法
基于自动亮度对比度增强功能的可逆数据隐藏(Matlab代码实现)
基于自动亮度对比度增强功能的可逆数据隐藏(Matlab代码实现)
118 0
|
自动驾驶 机器人 计算机视觉
3D检测难点 | 3D检测如何解决远处小目标问题?Deformable PV-RCNN 或是个答案!
3D检测难点 | 3D检测如何解决远处小目标问题?Deformable PV-RCNN 或是个答案!
185 0
|
机器学习/深度学习 算法 测试技术
图像大面积缺失,也能逼真修复,新模型CM-GAN兼顾全局结构和纹理细节(1)
图像大面积缺失,也能逼真修复,新模型CM-GAN兼顾全局结构和纹理细节
277 0