【基础篇】4 # 链表(上):如何实现LRU缓存淘汰算法?

简介: 【基础篇】4 # 链表(上):如何实现LRU缓存淘汰算法?

说明

【数据结构与算法之美】专栏学习笔记



链表结构


数组需要一块连续的内存空间来存储,对内存的要求比较高, 而链表并不需要一块连续的内存空间,它通过指针将一组零散的内存块串联起来使用。


  • 结点:指的是内存块
  • 后继指针 next:指的是记录下个结点地址的指针



单链表

单向链表只有一个方向,结点只有一个后继指针 next 指向后面的结点。

043dfcd793ae4776a5a6de2e23be405e.png

  • 头结点:第一个结点,用来记录链表的基地址

尾结点:最后一个结点,指向一个空地址 NULL



循环链表


循环链表是一种特殊的单链表。循环链表和单链表的区别,单链表的尾结点指针指向空地址,循环链表的尾结点指针是指向链表的头结点。

90f48ed89799413aa061cfcc334660ba.png

循环链表的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特点时,就特别适合采用循环链表,比如约瑟夫问题。



双向链表

双向链表支持两个方向,每个结点不止有一个后继指针 next 指向后面的结点,还有一个前驱指针 prev 指向前面的结点。


b745d7305def463aa182661f2451d41e.png

双向链表比单链表占用内存空间更多(用空间换时间),但支持双向遍历,操作灵活。



双向循环链表

首节点的前驱指针指向尾节点,尾节点的后继指针指向首节点。

d0e42e3e8a2a4a378ba61f2a659e5f50.png



链表的随机访问

因为链表中的数据并非连续存储的,所以无法像数组那样,根据首地址和下标,通过寻址公式就能直接计算出对应的内存地址,而是需要根据指针一个结点一个结点地依次遍历,直到找到相应的结点。其时间复杂度为O(n)



链表的插入和删除操作


因为链表的存储空间本身就不是连续的,所以在链表中插入和删除一个数据是非常快速的。只需要考虑相邻结点的指针改变,其对应的时间复杂度是 O(1)。


插入操作:

0a542231f88c422abce9a320e40074b0.png


删除操作:

58db643b25eb4a89a0e23c41b01081d3.png




为什么双向链表比单链表更加高效?


从链表中删除一个数据的两种情况:


   删除结点中 值等于某个给定值 的结点

   删除给定指针指向的结点


对于第一种情况:

不管是单链表还是双向链表,为了查找到值等于给定值的结点,都需要从头结点开始一个一个依次遍历对比,直到找到值等于给定值的结点,然后再通过指针操作将其删除。其时间复杂度为 O(n)。


对于第二种情况:

找到要删除的结点后,删除某个结点需要知道其前驱结点,而单链表并不支持直接获取前驱结点,需要从头结点开始遍历链表,直到找到前驱结点,其时间复杂度为 O(n) ;而双向链表中的结点已经保存了前驱结点的指针,不需要像单链表那样遍历,其时间复杂度为 O(1) 。


同理,插入操作也是一样。


另外对于一个有序链表,双向链表按值查询的效率也要比单链表高一些。通过记录上次查找的位置 p,每次查询时,根据要查找的值与 p 的大小关系,决定是往前还是往后查找,所以平均只需要查找一半的数据。



链表 VS 数组

插入、删除、随机访问操作的时间复杂度比对:

操作 数组 链表
随机访问 O(1) O(n)
插入 O(n) O(1)
删除 O(n) O(1)



数组简单易用,在实现上使用连续的内存空间,可以借助CPU的缓冲机制预读数组中的数据,所以访问效率更高,而链表在内存中并不是连续存储,所以对CPU缓存不友好,没办法预读。如果代码对内存的使用非常苛刻,那数组就更适合。链表更适合插入、删除操作频繁的场景。


CPU缓存机制指的是什么?为什么就数组更好?


   CPU 在从内存读取数据的时候,会先把读取到的数据加载到CPU的缓存中。而CPU每次从内存读取数据并不是只读取那个特定要访问的地址,而是读取一个数据块并保存到CPU缓存中,然后下次访问内存数据的时候就会先从CPU缓存开始查找,如果找到就不需要再从内存中取。这样就实现了比内存访问速度更快的机制,也就是CPU缓存存在的意义:为了弥补内存访问速度过慢与CPU执行速度快之间的差异而引入。 对于数组来说,存储空间是连续的,所以在加载某个下标的时候可以把以后的几个下标元素也加载到CPU缓存这样执行速度会快于存储空间不连续的链表存储。------来自 Rain 的留言


数组缺点:


   若申请内存空间很大,没有足够的连续空间,则会申请失败,尽管内存可用空间是够的。


   大小固定,若存储空间不足,需进行扩容,一旦扩容就要进行数据复制,很费时。


链表缺点:


   内存空间消耗更大,因为需要额外的空间存储指针信息。


   对链表进行频繁的插入和删除操作,会导致频繁的内存申请和释放,容易造成内存碎片,还可能会造成频繁的GC(自动垃圾回收器)操作。




如何基于链表实现 LRU 缓存淘汰算法?


常见的缓存策略有三种

  • 先进先出策略 FIFO(First In,First Out)
  • 最少使用策略 LFU(Least Frequently Used)
  • 最近最少使用策略 LRU(Least Recently Used)


LRU的算法思路


维护一个有序单链表,越靠近链表尾部的结点是越早之前访问的。


  • 当访问的值在链表中时: 将找到链表中值将其删除,并重新在链表头添加该值
  • 当访问的值不在链表中时:    
  • 当链表已满:删除链表最后一个值,将要添加的值放在链表头
  • 当链表未满:直接在链表头添加






目录
相关文章
|
3天前
|
存储 监控 算法
员工电脑监控系统中的 C# 链表算法剖析-如何监控员工的电脑
当代企业管理体系中,员工电脑监控已成为一个具有重要研究价值与实践意义的关键议题。随着数字化办公模式的广泛普及,企业亟需确保员工对公司资源的合理利用,维护网络安全环境,并提升整体工作效率。有效的电脑监控手段对于企业实现这些目标具有不可忽视的作用,而这一过程离不开精妙的数据结构与算法作为技术支撑。本文旨在深入探究链表(Linked List)这一经典数据结构在员工电脑监控场景中的具体应用,并通过 C# 编程语言给出详尽的代码实现与解析。
27 5
|
1月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
94 29
|
16天前
|
存储 监控 算法
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
21 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
|
5月前
|
缓存 算法 数据挖掘
深入理解缓存更新策略:从LRU到LFU
【10月更文挑战第7天】 在本文中,我们将探讨计算机系统中缓存机制的核心——缓存更新策略。缓存是提高数据检索速度的关键技术之一,无论是在硬件还是软件层面都扮演着重要角色。我们会详细介绍最常用的两种缓存算法:最近最少使用(LRU)和最少使用频率(LFU),并讨论它们的优缺点及适用场景。通过对比分析,旨在帮助读者更好地理解如何选择和实现适合自己需求的缓存策略,从而优化系统性能。
121 3
|
5月前
|
算法
【❤️算法笔记❤️】-每日一刷-19、删除链表的倒数第 N个结点
【❤️算法笔记❤️】-每日一刷-19、删除链表的倒数第 N个结点
105 1
|
1月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
107 25
|
5月前
|
算法 索引
❤️算法笔记❤️-(每日一刷-141、环形链表)
❤️算法笔记❤️-(每日一刷-141、环形链表)
78 0
|
5月前
|
算法
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
78 0
|
5月前
|
算法
【❤️算法笔记❤️】-每日一刷-23、合并 K 个升序链表
【❤️算法笔记❤️】-每日一刷-23、合并 K 个升序链表
57 0
|
5月前
|
存储 算法
【❤️算法笔记❤️】-每日一刷-21、合并两个有序链表
【❤️算法笔记❤️】-每日一刷-21、合并两个有序链表
169 0