随笔:注意力机制Attention

简介: 随笔:注意力机制Attention

注意力机制Attention


这里列举了多位大佬对注意力机制的讲解,可以结合起来看,形成更加深刻的理解。

1。沐神 动手学机器学习


2.机器学习 李宏毅


目录
相关文章
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了ViT的改进,提出DilateFormer,它结合多尺度扩张注意力(MSDA)来平衡计算效率和关注域大小。MSDA利用局部稀疏交互减少冗余,通过不同头部的扩张率捕获多尺度特征。DilateFormer在保持高性能的同时,计算成本降低70%,在ImageNet-1K、COCO和ADE20K任务上取得领先结果。YOLOv8引入了MultiDilatelocalAttention模块,用于实现膨胀注意力。更多详情及配置见相关链接。
|
5月前
|
机器学习/深度学习 自然语言处理 机器人
注意力机制详解(二)
注意力机制(Attention Mechanism)对比分析:无Attention模型中,Encoder-Decoder框架处理文本序列时,输入信息被编码为单一的中间语义表示,导致每个目标单词生成时使用相同编码,忽视了输入序列中各单词的不同影响。引入Attention模型后,每个目标单词根据输入序列动态分配注意力权重,更好地捕捉输入相关性,尤其适用于长序列,避免信息丢失。Self-Attention则进一步在序列内部建立联系,用于理解不同部分间的关系,常见于Transformer和BERT等模型中。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
注意力机制详解(一)
注意力机制是受人类认知过程启发的一种深度学习技术,它允许模型动态地聚焦于输入的不同部分,根据上下文分配“注意力”。这种机制最早在序列到序列模型中提出,解决了长距离依赖问题,增强了模型理解和处理复杂数据的能力。基本的注意力计算涉及查询(Q)、键(K)和值(V),通过不同方式(如点积、拼接等)计算相关性并应用softmax归一化,得到注意力权重,最后加权组合值向量得到输出。自注意力是注意力机制的一种形式,其中Q、K和V通常是相同的。在自然语言处理(NLP)中,注意力机制广泛应用在Transformer和预训练模型如BERT中,显著提升了模型的表现。
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-注意力机制】Polarized Self-Attention: 极化自注意力,双重注意力机制
YOLOv10引入了极化自注意(PSA)块,结合通道和空间注意力,降低信息损失。PSA通过极化过滤保持高分辨率,并用增强处理非线性分布。在2D姿态估计和分割任务上提升1-2点精度,相比基线提升2-4点。代码示例展示了PSA模块如何集成到模型中。更多配置详情见相关链接。
|
5月前
|
机器学习/深度学习 编解码 算法
【YOLOv8改进】Polarized Self-Attention: 极化自注意力 (论文笔记+引入代码)
该专栏专注于YOLO目标检测算法的创新改进和实战应用,包括卷积、主干网络、注意力机制和检测头的改进。作者提出了一种名为极化自注意(PSA)块,结合极化过滤和增强功能,提高像素级回归任务的性能,如关键点估计和分割。PSA通过保持高分辨率和利用通道及空间注意力,减少了信息损失并适应非线性输出分布。实验证明,PSA能提升标准基线和最新技术1-4个百分点。代码示例展示了如何在YOLOv8中实现PSA模块。更多详细信息和配置可在提供的链接中找到。
|
6月前
|
机器学习/深度学习 自然语言处理 算法
注意力机制(四)(多头注意力机制)
在上一篇注意力机制(三)(不同注意力机制对比)-CSDN博客,重点讲了针对QKV来源不同制造的注意力机制的一些变体,包括交叉注意力、自注意力等。这里再对注意力机制理解中的核心要点进行归纳整理
|
6月前
|
机器学习/深度学习 自然语言处理 并行计算
一文搞懂Transformer架构的三种注意力机制
一文搞懂Transformer架构的三种注意力机制
618 1
|
6月前
|
机器学习/深度学习
注意力机制(二)(自注意力机制)
看一个物体的时候,我们倾向于一些重点,把我们的焦点放到更重要的信息上
注意力机制(二)(自注意力机制)
|
6月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进 | 注意力机制 | 添加全局注意力机制 GcNet【附代码+小白必备】
本文介绍了如何在YOLOv8中集成GcNet,以增强网络对全局上下文的捕获能力。GcNet通过全局上下文模块、通道和空间注意力机制提升CNN对全局信息的利用。教程详细阐述了GcNet的原理,并提供了将GcNet添加到YOLOv8的代码实现步骤,包括创建ContextBlock类、修改init.py、task.py以及配置yaml文件。此外,还提供了训练和运行示例代码。完整代码和更多进阶内容可在作者的博客中找到。
|
6月前
|
机器学习/深度学习
注意力机制(三)(不同注意力机制对比)
主要介绍了注意力机制的基本思想,以及注意力机制中一个常见的类型——自注意力机制。前面两篇文章为了帮助大家理解注意力机制的思想用了非常多的类比,以及联系生活实际。 然而,不管类比和联系多么恰当,这些做法多多少少都会让事物本身的特性被类比、联系后的事物所掩盖。