时域高通滤波算法(THPF)下

简介: 空域低通时域高通非均匀性校正算法

由于影响THPF算法收敛速度与其鬼影问题的根本原因在于大量无关的场景信息被参与到非均匀性校正参数的计算过程中,所以只要尽可能将更多的场景信息,特别是强物体从原始图像中排除,再将剩下的部分参与到非均匀性校正参数的计算过程,这样就可以尽可能减小非随机运动与场景中强物体对校正过程的影响,有效减少鬼影效应。根据这个思想,SLPF-NUC 预先采用空域滤波器将输入的图像信号进行分离。由于在空间上,场景中目标信号具有连续相关性,表现为空域低频性,而非均匀性是由各探测器阵列元独立产生,各阵列元对应的输出的非均匀性差异较大,表现为空域高频性,所以应用空域滤波器将原始信号分离成高频( HSF) 和低频( LSF) 两个部分,只利用高频部分参与非均匀性的校正。


最早的算法中采用了空域线性均值滤波器,场景中的边缘信号同时被平均,所以可以引入一个阈值Th,大于阈值时,可认为它是场景的边缘,置零,不参与非均匀性的校正。后续不断升级低通滤波器,SLPF(空域均值滤波高通非均匀性校正算法)->BFTH(空域双边滤波高通非均匀性校正算法)->GFTH(空域引导滤波高通非均匀性校正算法)->NLMTH(空域非局部均值滤波高通非均匀性校正算法)。也可以通过添加运动检测判断、自适应权重系数对算法进行改进,效果越来越好的同时,算法实时硬件实现的难度也在不断提高。

84e34e631ba6409cbf58638f7b111e65.png

MATLAB代码实现:

clear; 
closeall;
clc;
%% 初始化frameWidth  = 640;
frameHeight = 512;
M = 200;      % 时间参数image(:,:,:) = zeros(512,640,100); 
image_low(:,:,:) = zeros(512,640,100); 
image_high(:,:,:) = zeros(512,640,100); 
hsize = 5;
H = fspecial('average',hsize);
%% 帧间迭代fork = 2:100%读取序列图像fileName = ['.\序列图像\(', num2str(k), ')', '.Raw'];
image(:,:,k) = double(reshape(uint16(fread(fopen(fileName),'uint16'))
          ,[frameWidthframeHeight])');   
image_low(:,:,k)=filter2(H,image(:,:,k));
image_high(:,:,k) = image(:,:,k) -image_low(:,:,k);
image(:,:,k) = 1/M*image_high(:,:,k) + (1-1/M)*image(:,:,k-1);  
endimage_x(:,:) = image(:,:,k);
%% 测试图像filename    = '第100帧.Raw';
fid         = fopen(filename);
image_raw   = fread(fid,'uint16');
image_raw   = uint16(image_raw);
fclose(fid);
data_temp  = reshape(image_raw,[frameWidthframeHeight]);
image_raw   = data_temp';
image_raw = double(image_raw);
image_out = image_raw-image_x;
%% 输出结果图figure(1);imshow(image_raw,[]);title('原图像');
figure(2);imshow(image_out,[]);title('SLPF效果图');
目录
相关文章
|
算法 BI
m基于遗传优化的时域声辐射模态的振动控制算法的matlab仿真
m基于遗传优化的时域声辐射模态的振动控制算法的matlab仿真
143 0
|
机器学习/深度学习 算法 计算机视觉
时域高通滤波算法(THPF)上
图像非均匀校正中的场景校正算法-时域高通滤波算法(Temporal High Pass Filtering, THPF)以及它后续的各种改进版本。空域和频域已经在之前的文章介绍过一些了,时域还没有。图像是二维空间域上的像素,随着时间的延续,每秒25、30、60帧,就成了视频,针对视频进行图像处理,就可以考虑增加一个时间维度,图像帧与帧之间是存在相关性的,结合时域滤波算法可以有效去除图像中的噪声和探测非均匀性问题。
408 0
时域高通滤波算法(THPF)上
|
算法 图形学
labview信号时域分析算法
labview信号时域分析算法
169 0
|
4天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
17天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
152 80
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
5天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
3天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
2天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
11天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。