时域高通滤波算法(THPF)下

简介: 空域低通时域高通非均匀性校正算法

由于影响THPF算法收敛速度与其鬼影问题的根本原因在于大量无关的场景信息被参与到非均匀性校正参数的计算过程中,所以只要尽可能将更多的场景信息,特别是强物体从原始图像中排除,再将剩下的部分参与到非均匀性校正参数的计算过程,这样就可以尽可能减小非随机运动与场景中强物体对校正过程的影响,有效减少鬼影效应。根据这个思想,SLPF-NUC 预先采用空域滤波器将输入的图像信号进行分离。由于在空间上,场景中目标信号具有连续相关性,表现为空域低频性,而非均匀性是由各探测器阵列元独立产生,各阵列元对应的输出的非均匀性差异较大,表现为空域高频性,所以应用空域滤波器将原始信号分离成高频( HSF) 和低频( LSF) 两个部分,只利用高频部分参与非均匀性的校正。


最早的算法中采用了空域线性均值滤波器,场景中的边缘信号同时被平均,所以可以引入一个阈值Th,大于阈值时,可认为它是场景的边缘,置零,不参与非均匀性的校正。后续不断升级低通滤波器,SLPF(空域均值滤波高通非均匀性校正算法)->BFTH(空域双边滤波高通非均匀性校正算法)->GFTH(空域引导滤波高通非均匀性校正算法)->NLMTH(空域非局部均值滤波高通非均匀性校正算法)。也可以通过添加运动检测判断、自适应权重系数对算法进行改进,效果越来越好的同时,算法实时硬件实现的难度也在不断提高。

84e34e631ba6409cbf58638f7b111e65.png

MATLAB代码实现:

clear; 
closeall;
clc;
%% 初始化frameWidth  = 640;
frameHeight = 512;
M = 200;      % 时间参数image(:,:,:) = zeros(512,640,100); 
image_low(:,:,:) = zeros(512,640,100); 
image_high(:,:,:) = zeros(512,640,100); 
hsize = 5;
H = fspecial('average',hsize);
%% 帧间迭代fork = 2:100%读取序列图像fileName = ['.\序列图像\(', num2str(k), ')', '.Raw'];
image(:,:,k) = double(reshape(uint16(fread(fopen(fileName),'uint16'))
          ,[frameWidthframeHeight])');   
image_low(:,:,k)=filter2(H,image(:,:,k));
image_high(:,:,k) = image(:,:,k) -image_low(:,:,k);
image(:,:,k) = 1/M*image_high(:,:,k) + (1-1/M)*image(:,:,k-1);  
endimage_x(:,:) = image(:,:,k);
%% 测试图像filename    = '第100帧.Raw';
fid         = fopen(filename);
image_raw   = fread(fid,'uint16');
image_raw   = uint16(image_raw);
fclose(fid);
data_temp  = reshape(image_raw,[frameWidthframeHeight]);
image_raw   = data_temp';
image_raw = double(image_raw);
image_out = image_raw-image_x;
%% 输出结果图figure(1);imshow(image_raw,[]);title('原图像');
figure(2);imshow(image_out,[]);title('SLPF效果图');
目录
相关文章
|
算法 BI
m基于遗传优化的时域声辐射模态的振动控制算法的matlab仿真
m基于遗传优化的时域声辐射模态的振动控制算法的matlab仿真
111 0
|
算法 图形学
labview信号时域分析算法
labview信号时域分析算法
108 0
|
机器学习/深度学习 算法 计算机视觉
时域高通滤波算法(THPF)上
图像非均匀校正中的场景校正算法-时域高通滤波算法(Temporal High Pass Filtering, THPF)以及它后续的各种改进版本。空域和频域已经在之前的文章介绍过一些了,时域还没有。图像是二维空间域上的像素,随着时间的延续,每秒25、30、60帧,就成了视频,针对视频进行图像处理,就可以考虑增加一个时间维度,图像帧与帧之间是存在相关性的,结合时域滤波算法可以有效去除图像中的噪声和探测非均匀性问题。
320 0
时域高通滤波算法(THPF)上
|
2天前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
23 8
|
4天前
|
算法
基于GA遗传优化的混合发电系统优化配置算法matlab仿真
**摘要:** 该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。
|
6天前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。
|
1天前
|
机器学习/深度学习 存储 算法
基于SFLA算法的神经网络优化matlab仿真
**摘要:** 使用MATLAB2022a,基于SFLA算法优化神经网络,降低训练误差。程序创建12个神经元的前馈网络,训练后计算性能。SFLA算法寻找最优权重和偏置,更新网络并展示训练与测试集的预测效果,以及误差对比。SFLA融合蛙跳与遗传算法,通过迭代和局部全局搜索改善网络性能。通过调整算法参数和与其他优化算法结合,可进一步提升模型预测精度。
|
6天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的64QAM解调算法matlab性能仿真
**算法预览图省略** MATLAB 2022A版中,运用BP神经网络进行64QAM解调。64QAM通过6比特映射至64复数符号,提高数据速率。BP网络作为非线性解调器,学习失真信号到比特的映射,对抗信道噪声和多径效应。网络在处理非线性失真和复杂情况时展现高适应性和鲁棒性。核心代码部分未显示。
|
4天前
|
算法 计算机视觉
基于Chan-Vese算法的图像边缘提取matlab仿真
**算法预览展示了4幅图像,从边缘检测到最终分割,体现了在matlab2022a中应用的Chan-Vese水平集迭代过程。核心代码段用于更新水平集并显示迭代效果,最后生成分割结果及误差曲线。Chan-Vese模型(2001)是图像分割的经典方法,通过最小化能量函数自动检测平滑区域和清晰边界的图像分割,适用于复杂环境,广泛应用于医学影像和机器视觉。**
|
9天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
28 6