【MATLAB】离散余弦变换滤波算法(DCT)

简介: 之前介绍的所有滤波算法都是空间域滤波算法(即2D滤波算法)。离散余弦变换滤波算法(DCT)属于频率域滤波算法(即3D滤波算法)。

时间域相对于空间域增加了一个时间维度,可以对不同时间段的图像进行处理,对时域噪声有很好的抑制作用。而频率域又是一个全新的维度,换个角度看问题,将图像转换到频域,高频部分代表图像的细节、纹理信息,低频部分代表图像的轮廓信息,可以再特定的“频率”范围内对图像进行处理,就像是用显微镜看图像一样,能挖掘图像更加广阔的信息。

344ec2820c234846b5a84c90c49cd495.jpg

在图像处理中,图像为离散二维矩阵,所以算法都是离散形式。离散余弦变换是一种频率域转为到空间域的数学工具(函数),它为频率域与空间域架起一座桥梁。离散余弦变换是离散傅里叶变换(DFT)的一种特殊形式,特殊点就在于其原始变换信号是一个实偶函数。DCT变换较DFT变换具有更好的频域能量聚集度,那么对于那些不重要的频域区域和系数就能够直接裁剪掉,因此,DCT变换非常适合于图像压缩算法的处理,例如现在大名鼎鼎的jpeg就是使用了DCT作为图像压缩算法。

09c70c747c7346f28809ed4e3b782f93.png

离散余弦变换,本质上是一种数学方法。它与傅立叶变换,小波变换,超小波变换,这些变换本质都是一种基变换,对于不同的系统,不同的研究对象,我们可以选取不同的基来让研究和分析变得更加简单。比如因为复指数信号是线性时不变系统的特征函数,因此我们在研究线性时不变系统及其特性时通常采用傅立叶变换,选取了一组好的基,可以让问题变得简单,比如我们的现在机器学习里很多的降维算法,像PCA,K-L变换也是基变换,对于一些基可能会出现很多很小的系数,或者是零系数,这要用这组基去表示这一信号或者向量时也就更加的简洁,而越是简洁就越于分析。

eb35d7496525403aa1adb3bf272ea5de.png

二维DCT变换公式如下:

73078b41f21949669f885df05091b931.png

  由公式我们可以看出,上面只讨论了二维图像数据为方阵的情况,在实际应用中,如果不是方阵的数据一般都是补齐之后再做变换的,重构之后可以去掉补齐的部分,得到原始的图像信息,这个尝试一下,应该比较容易理解

      另外,由于DCT变换高度的对称性,在使用Matlab进行相关的运算时,我们可以使用更简单的矩阵处理方式:

be44a7546e854678bda3efc037835d2e.png

DCT变换与IDCT变换,MATLAB代码实现:

clear;
clc;
% 正变换X=round(rand(4)*100)   %产生随机矩阵A=zeros(4);
fori=0:3forj=0:3ifi==0a=sqrt(1/4);
elsea=sqrt(2/4);
endA(i+1,j+1)=a*cos(pi*(j+0.5)*i/4);
endendY=A*X*A'%DCT变换%反变换fori=0:3forj=0:3ifi==0a=sqrt(1/4);
elsea=sqrt(2/4);
endA(i+1,j+1)=a*cos(pi*(j+0.5)*i/4); %生成变换矩阵endendX1=A'*Y*A%DCT反变换恢复的矩阵% Matlab版YY=dct2(X)      %Matlab自带的dct变换XX=idct2(YY)    %Matlab自带的idct逆变换

因为噪声主要存在于高频信息中,对高频信息进行适当抑制,可以起到图像去噪的作用,这里采用简单高频抑制方法,可以降噪但也会丢失细节,中间处理的方法还有很多就不一一列举,MATLAB代码如下:

%读取图像X=imread('lena.jpg'); 
X=rgb2gray(X);
%读取图像尺寸[m,n]=size(X); 
%给图像加噪Xnoised=imnoise(X,'gaussian',0.01); 
%输出加噪图像subplot(121); 
imshow(Xnoised);
%DCT变换Y=dct2(Xnoised); 
I=zeros(m,n);
%高频抑制I(1:m/3,1:n/3)=1; 
Ydct=Y.*I;
%逆DCT变换Y=uint8(idct2(Ydct)); 
%结果输出subplot(122);
imshow(Y);

c77837f3a0af486d8d365c9373353dfd.png

目录
相关文章
|
4天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
5天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
3天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
2天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
11天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
10天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
8天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
7天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
7天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。