【深入浅出之透析RocketMQ原理及实战指南】RocketMQ学习入门指南 | ​​RocketMQ物理和逻辑架构结构精讲​

简介: 【深入浅出之透析RocketMQ原理及实战指南】RocketMQ学习入门指南 | ​​RocketMQ物理和逻辑架构结构精讲​

RocketMQ物理部署角色


image.png

RocketMQ架构上主要分为四部分,如上图所示:


  • Producer:消息发布的角色,支持分布式集群方式部署。Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息投递,投递的过程支持快速失败并且低延迟。


  • Consumer:消息消费的角色,支持分布式集群方式部署。支持以push推,pull拉两种模式对消息进行消费。同时也支持集群方式和广播方式的消费,它提供实时消息订阅机制,可以满足大多数用户的需求。


  • NameServer:NameServer是一个非常简单的Topic路由注册中心,其角色类似Dubbo中的zookeeper,支持Broker的动态注册与发现。主要包括两个功能:Broker管理,NameServer接受Broker集群的注册信息并且保存下来作为路由信息的基本数据。然后提供心跳检测机制,检查Broker是否还存活;路由信息管理,每个NameServer将保存关于Broker集群的整个路由信息和用于客户端查询的队列信息。然后Producer和Conumser通过NameServer就可以知道整个Broker集群的路由信息,从而进行消息的投递和消费。NameServer通常也是集群的方式部署,各实例间相互不进行信息通讯。Broker是向每一台NameServer注册自己的路由信息,所以每一个NameServer实例上面都保存一份完整的路由信息。当某个NameServer因某种原因下线了,Broker仍然可以向其它NameServer同步其路由信息,Producer,Consumer仍然可以动态感知Broker的路由的信息。


  • BrokerServer:Broker主要负责消息的存储、投递和查询以及服务高可用保证,为了实现这些功能,Broker包含了以下几个重要子模块。




RocketMQ物理部署结构


image.png

RocketMQ网络部署架构


  • Name Server 是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。


  • Broker 部署相对复杂,Broker分为Master与Slave,一个Master可以对应多个Slave,但是一个 Slave 只能对应一个 Master,MasterSlave 的对应关系通过指定相同的 BrokerName,不同的BrokerId来定义,BrokerId为 0 表示 Master,非0表示 Slave。


  • Master也可以部署多个。每个Broker与Name Server集群中的所有节点建立长连接,定时注册 Topic 信息到所有 Name Server。


  • Producer 与 NameServer 集群中的其中一个节点(随机选择)建立长连接,定期从Name Server取Topic路由信息,并向提供 Topic 服务的 Master 建立长连接,且定时向 Master 发送心跳。Producer 完全无状态,可集群部署。


  • Consumer与NameServer集群中的其中一个节点(随机选择)建立长连接,定期从NameServer获取Topic路由信息,并向提供Topic服务的Master、Slave建立长连接,且定时向Master、Slave发送心跳。Consumer既可以从Master订阅消息,也可以从Slave订阅消息,消费者在向Master拉取消息时,Master服务器会根据拉取偏移量与最大偏移量的距离(判断是否读老消息,产生读I/O),以及从服务器是否可读等因素建议下一次是从Master还是Slave拉取。




RocketMQ功能Broker服务内部组件机制


image.png

  • Remoting Module:整个Broker的实体,负责处理来自clients端的请求。
  • Client Manager:负责管理客户端(Producer/Consumer)和维护Consumer的Topic订阅信息
  • Store Service:提供方便简单的API接口处理消息存储到物理硬盘和查询功能。
  • HA Service:高可用服务,提供Master Broker 和 Slave Broker之间的数据同步功能。
  • Index Service:根据特定的Message key对投递到Broker的消息进行索引服务,以提供消息的快速查询。

RocketMQ 逻辑部署结构

image.png


Producer Group(生产者组)


     用来表示一个发送消息应用,一个 Producer Group下包含多个Producer实例,可以是多台机器,也可以是一台机器的多个进程,或者一个进程的多个Producer对象。



     一个 Producer Group 可以发送多个 Topic 消息,Producer Group 作用如下:

  1. 标识一类 Producer
  2. 可以通过运维工具查询这个发送消息应用下有多个 Producer 实例
  3. 发送分布式事务消息时,如果 Producer 中途意外宕机,Broker 会主动回调 Producer Group 内的任意一台机器来确认事务状态。



Consumer Group(消费者组)


一个Consumer Group 用来表示一个消费消息应用,一个Consumer Group 下包含多个 Consumer 实例,可以是多台机器,也可 以是多个进程,或者是一个进程的多个 Consumer 对象。一个 Consumer Group 下的多个 Consumer 以均摊 方式消费消息,如果设置为广播方式,那么这个 Consumer Group 下的每个实例都消费全量数据。




逻辑模型-标签(Tag)


消息设置的标志,用于同一主题下区分不同类型的消息。来自同一业务单元的消息,可以根据不同业务目的在同一主题下设置不同标签。标签能够有效地保持代码的清晰度和连贯性,并优化RocketMQ提供的查询系统。消费者可以根据Tag实现对不同子主题的不同消费逻辑,实现更好的扩展性。


  • Topic:消息主题,通过 Topic 对不同的业务消息进行分类。


  • Tag:消息标签,用来进一步区分某个 Topic 下的消息分类,消息从生产者发出即带上的属性。

Topic 和 Tag 的关系如下图所示。

image.png



什么时候该用 Topic,什么时候该用 Tag?


可以从以下几个方面进行判断:


  • 消息类型是否一致:如普通消息、事务消息、定时(延时)消息、顺序消息,不同的消息类型使用不同的 Topic,无法通过 Tag 进行区分。


  • 业务是否相关联:没有直接关联的消息,如淘宝交易消息,京东物流消息使用不同的 Topic 进行区分;而同样是天猫交易消息,电器类订单、女装类订单、化妆品类订单的消息可以用 Tag 进行区分。


  • 消息优先级是否一致:如同样是物流消息,盒马必须小时内送达,天猫超市 24 小时内送达,淘宝物流则相对会慢一些,不同优先级的消息用不同的Topic进行区分。


  • 消息量级是否相当:有些业务消息虽然量小但是实时性要求高,如果跟某些万亿量级的消息使用同一个 Topic,则有可能会因为过长的等待时间而“饿死”,此时需要将不同量级的消息进行拆分,使用不同的 Topic。


     总的来说,针对消息分类,您可以选择创建多个 Topic,或者在同一个 Topic 下创建多个 Tag。但通常情况下,不同的 Topic 之间的消息没有必然的联系,而 Tag 则用来区分同一个 Topic 下相互关联的消息,例如全集和子集的关系、流程先后的关系。



订阅与发布


     消息的发布是指某个生产者向某个topic发送消息;消息的订阅是指某个消费者关注了某个topic中带有某些tag的消息,进而从该topic消费数据。



内部队列的顺序(逻辑有序)


     消息有序指的是一类消息消费时,能按照发送的顺序来消费。例如:一个订单产生了三条消息分别是订单创建、订单付款、订单完成。消费时要按照这个顺序消费才能有意义,但是同时订单之间是可以并行消费的。RocketMQ可以严格的保证消息有序。


     顺序消息分为全局顺序消息与分区顺序消息,全局顺序是指某个Topic下的所有消息都要保证顺序;部分顺序消息只要保证每一组消息被顺序消费即可。


  • 全局顺序 对于指定的一个 Topic,所有消息按照严格的先入先出(FIFO)的顺序进行发布和消费。 适用场景:性能要求不高,所有的消息严格按照 FIFO 原则进行消息发布和消费的场景
  • 分区顺序 对于指定的一个 Topic,所有消息根据 sharding key 进行区块分区。 同一个分区内的消息按照严格的 FIFO 顺序进行发布和消费。 Sharding key 是顺序消息中用来区分不同分区的关键字段,和普通消息的 Key 是完全不同的概念。


     为了支持高并发和水平扩展,需要对 Topic 进行分区,在 RocketMQ 中这被称为队列,一个 Topic 可能有多个队列,并且可能分布在不同的 Broker 上。

image.png

适用场景:性能要求高,以sharding key作为分区字段,在同一个区块中严格的按照 FIFO 原则进行消息发布和消费的场景。


      一般来说一条消息,如果没有重复发送(比如因为服务端没有响应而进行重试),则只会存在在 Topic 的其中一个队列中,消息在队列中按照先进先出的原则存储,每条消息会有自己的位点,每个队列会统计当前消息的总条数,这个称为最大位点 MaxOffset;队列的起始位置对应的位置叫做起始位点 MinOffset。队列可以提升消息发送和消费的并发度。




相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
5月前
|
消息中间件 存储 缓存
RocketMQ原理—4.消息读写的性能优化
本文详细解析了RocketMQ消息队列的核心原理与性能优化机制,涵盖Producer消息分发、Broker高并发写入、Consumer拉取消息流程等内容。重点探讨了基于队列的消息分发、Hash有序分发、CommitLog内存写入优化、ConsumeQueue物理存储设计等关键技术点。同时分析了数据丢失场景及解决方案,如同步刷盘与JVM OffHeap缓存分离策略,并总结了写入与读取流程的性能优化方法,为理解和优化分布式消息系统提供了全面指导。
RocketMQ原理—4.消息读写的性能优化
|
3月前
|
消息中间件 存储 Kafka
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
1709 7
 一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
3 秒音频也能克隆?拆解 Spark-TTS 架构的极致小样本学习
本文深入解析了 Spark-TTS 模型的架构与原理,该模型仅需 3 秒语音样本即可实现高质量的零样本语音克隆。其核心创新在于 BiCodec 单流语音编码架构,将语音信号分解为语义 Token 和全局 Token,实现内容与音色解耦。结合大型语言模型(如 Qwen 2.5),Spark-TTS 能直接生成语义 Token 并还原波形,简化推理流程。实验表明,它不仅能克隆音色、语速和语调,还支持跨语言朗读及情感调整。尽管面临相似度提升、样本鲁棒性等挑战,但其技术突破为定制化 AI 声音提供了全新可能。
339 35
|
5月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
1117 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
5月前
|
存储 消息中间件 缓存
RocketMQ原理—3.源码设计简单分析下
本文介绍了Producer作为生产者是如何创建出来的、启动时是如何准备好相关资源的、如何从拉取Topic元数据的、如何选择MessageQueue的、与Broker是如何进行网络通信的,Broker收到一条消息后是如何存储的、如何实时更新索引文件的、如何实现同步刷盘以及异步刷盘的、如何清理存储较久的磁盘数据的,Consumer作为消费者是如何创建和启动的、消费者组的多个Consumer会如何分配消息、Consumer会如何从Broker拉取一批消息。
188 11
RocketMQ原理—3.源码设计简单分析下
|
5月前
|
存储 消息中间件 网络协议
RocketMQ原理—1.RocketMQ整体运行原理
本文详细解析了RocketMQ的整体运行原理,涵盖从生产者到消费者的全流程。首先介绍生产者发送消息的机制,包括Topic与MessageQueue的关系及写入策略;接着分析Broker如何通过CommitLog和ConsumeQueue实现消息持久化,并探讨同步与异步刷盘的优缺点。同时,讲解基于DLedger技术的主从同步原理,确保高可用性。消费者部分则重点讨论消费模式(集群 vs 广播)、拉取消息策略及负载均衡机制。网络通信层面,基于Netty的高性能架构通过多线程池分工协作提升并发能力。最后,揭示mmap与PageCache技术优化文件读写的细节,总结了RocketMQ的核心运行机制。
RocketMQ原理—1.RocketMQ整体运行原理
|
5月前
|
消息中间件 Java 数据管理
RocketMQ原理—2.源码设计简单分析上
本文介绍了NameServer的启动脚本、启动时会解析哪些配置、如何初始化Netty网络服务器、如何启动Netty网络服务器,介绍了Broker启动时是如何初始化配置的、BrokerController的创建以及包含的组件、BrokerController的初始化、启动、Broker如何把自己注册到NameServer上、BrokerOuterAPI是如何发送注册请求的,介绍了NameServer如何处理Broker的注册请求、Broker如何发送定时心跳
|
5月前
|
Java 数据库连接 应用服务中间件
JavaWeb CRUD 与分页系统架构学习教程
本教程详细讲解了如何使用 Java Web 技术构建一个带有 CRUD 和分页功能的应用程序。以产品信息管理为例,采用 MVC 架构设计,涵盖 Servlet、JSP、JDBC/MyBatis 等技术。内容包括基础知识介绍、项目结构划分、数据库连接配置、DAO 层实现、Service 层设计、Servlet 控制层编写、JSP 前端展示以及分页功能的实现。同时涉及日志配置和 Tomcat 部署运行。通过分层开发,确保代码清晰、职责分明,便于维护和扩展。适合初学者掌握 Java Web 开发全流程,并为学习更高级框架奠定基础。
117 0
|
6月前
|
Java 数据库连接 应用服务中间件
JavaWeb CRUD 与分页系统架构学习教程
本教程将带你一步步构建一个 Java Web 的 CRUD(创建、读取、更新、删除)及分页功能的示例应用,涵盖从基本概念到完整项目架构的各个层次。
113 3
|
8月前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
1681 11
架构学习:7种负载均衡算法策略

热门文章

最新文章