技术汇总:第六章:分布式自增长ID

简介: 技术汇总:第六章:分布式自增长ID

package util;import java.lang.management.ManagementFactory;

import java.net.InetAddress;

import java.net.NetworkInterface;

/**

* <p>名称:IdWorker.java</p>

* <p>描述:分布式自增长ID</p>

* <pre>

*     Twitter的 Snowflake JAVA实现方案

* </pre>

* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:

* 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000

* 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,

* 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),

* 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。

* 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),

* 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。

* <p>

* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))

*

* @author Polim

*/

public class IdWorker {
    // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
    private final static long twepoch = 1288834974657L;
    // 机器标识位数
    private final static long workerIdBits = 5L;
    // 数据中心标识位数
    private final static long datacenterIdBits = 5L;
    // 机器ID最大值
    private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
    // 数据中心ID最大值
    private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    // 毫秒内自增位
    private final static long sequenceBits = 12L;
    // 机器ID偏左移12位
    private final static long workerIdShift = sequenceBits;
    // 数据中心ID左移17位
    private final static long datacenterIdShift = sequenceBits + workerIdBits;
    // 时间毫秒左移22位
    private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
    /* 上次生产id时间戳 */
    private static long lastTimestamp = -1L;
    // 0,并发控制
    private long sequence = 0L;
    private final long workerId;
    // 数据标识id部分
    private final long datacenterId;
    public IdWorker(){
        this.datacenterId = getDatacenterId(maxDatacenterId);
        this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
    }
    /**
     * @param workerId
     *            工作机器ID
     * @param datacenterId
     *            序列号
     */
    public IdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    /**
     * 获取下一个ID
     *
     * @return
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        if (lastTimestamp == timestamp) {
            // 当前毫秒内,则+1
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                // 当前毫秒内计数满了,则等待下一秒
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }
        lastTimestamp = timestamp;
        // ID偏移组合生成最终的ID,并返回ID
        long nextId = ((timestamp - twepoch) << timestampLeftShift)
                | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;
        return nextId;
    }
    private long tilNextMillis(final long lastTimestamp) {
        long timestamp = this.timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = this.timeGen();
        }
        return timestamp;
    }
    private long timeGen() {
        return System.currentTimeMillis();
    }
    /**
     * <p>
     * 获取 maxWorkerId
     * </p>
     */
    protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
        StringBuffer mpid = new StringBuffer();
        mpid.append(datacenterId);
        String name = ManagementFactory.getRuntimeMXBean().getName();
        if (!name.isEmpty()) {
         /*
          * GET jvmPid
          */
            mpid.append(name.split("@")[0]);
        }
      /*
       * MAC + PID 的 hashcode 获取16个低位
       */
        return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
    }
    /**
     * <p>
     * 数据标识id部分
     * </p>
     */
    protected static long getDatacenterId(long maxDatacenterId) {
        long id = 0L;
        try {
            InetAddress ip = InetAddress.getLocalHost();
            NetworkInterface network = NetworkInterface.getByInetAddress(ip);
            if (network == null) {
                id = 1L;
            } else {
                byte[] mac = network.getHardwareAddress();
                id = ((0x000000FF & (long) mac[mac.length - 1])
                        | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
                id = id % (maxDatacenterId + 1);
            }
        } catch (Exception e) {
            System.out.println(" getDatacenterId: " + e.getMessage());
        }
        return id;
    }
    public static void main(String[] args) {
        IdWorker idWorker=new IdWorker(0,0);
        for(int i=0;i<100;i++){
            long nextId = idWorker.nextId();
            System.out.println(nextId);
        }
    }
}
相关文章
|
5天前
|
算法 关系型数据库 MySQL
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
在分布式系统中,确保每个节点生成的 ID 唯一且高效至关重要。Snowflake 算法由 Twitter 开发,通过 64 位 long 型数字生成全局唯一 ID,包括 1 位标识位、41 位时间戳、10 位机器 ID 和 12 位序列号。该算法具备全局唯一性、递增性、高可用性和高性能,适用于高并发场景,如电商促销时的大量订单生成。本文介绍了使用 Go 语言的 `bwmarrin/snowflake` 和 `sony/sonyflake` 库实现 Snowflake 算法的方法。
18 1
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
|
3月前
|
算法 Go
[go 面试] 雪花算法与分布式ID生成
[go 面试] 雪花算法与分布式ID生成
|
19天前
|
NoSQL 算法 关系型数据库
分布式 ID 详解 ( 5大分布式 ID 生成方案 )
本文详解分布式全局唯一ID及其5种实现方案,关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
分布式 ID 详解 ( 5大分布式 ID 生成方案 )
|
19天前
|
监控 算法 网络协议
|
1月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
2月前
|
人工智能 Kubernetes Cloud Native
深度对话 解锁阿里云分布式云原生技术落地新姿势
深度对话 解锁阿里云分布式云原生技术落地新姿势
深度对话 解锁阿里云分布式云原生技术落地新姿势
因为一个问题、我新学了一门技术 ElasticSearch 分布式搜索
这篇文章讲述了作者因为一个检索问题而学习了ElasticSearch技术,并分享了排查和解决ElasticSearch检索结果与页面展示不符的过程。
因为一个问题、我新学了一门技术 ElasticSearch 分布式搜索
|
3月前
|
存储 缓存 负载均衡
【PolarDB-X 技术揭秘】Lizard B+tree:揭秘分布式数据库索引优化的终极奥秘!
【8月更文挑战第25天】PolarDB-X是阿里云的一款分布式数据库产品,其核心组件Lizard B+tree针对分布式环境优化,解决了传统B+tree面临的数据分片与跨节点查询等问题。Lizard B+tree通过一致性哈希实现数据分片,确保分布式一致性;智能分区实现了负载均衡;高效的搜索算法与缓存机制降低了查询延迟;副本机制确保了系统的高可用性。此外,PolarDB-X通过自适应分支因子、缓存优化、异步写入、数据压缩和智能分片等策略进一步提升了Lizard B+tree的性能,使其能够在分布式环境下提供高性能的索引服务。这些优化不仅提高了查询速度,还确保了系统的稳定性和可靠性。
90 5
|
3月前
|
C# UED 定位技术
WPF控件大全:初学者必读,掌握控件使用技巧,让你的应用程序更上一层楼!
【8月更文挑战第31天】在WPF应用程序开发中,控件是实现用户界面交互的关键元素。WPF提供了丰富的控件库,包括基础控件(如`Button`、`TextBox`)、布局控件(如`StackPanel`、`Grid`)、数据绑定控件(如`ListBox`、`DataGrid`)等。本文将介绍这些控件的基本分类及使用技巧,并通过示例代码展示如何在项目中应用。合理选择控件并利用布局控件和数据绑定功能,可以提升用户体验和程序性能。
66 0
|
3月前
|
存储 负载均衡 中间件
构建可扩展的分布式数据库:技术策略与实践
【8月更文挑战第3天】构建可扩展的分布式数据库是一个复杂而具有挑战性的任务。通过采用数据分片、复制与一致性模型、分布式事务管理和负载均衡与自动扩展等关键技术策略,并合理设计节点、架构模式和网络拓扑等关键组件,可以构建出高可用性、高性能和可扩展的分布式数据库系统。然而,在实际应用中还需要注意解决数据一致性、故障恢复与容错性以及分布式事务的复杂性等挑战。随着技术的不断发展和创新,相信分布式数据库系统将在未来发挥更加重要的作用。

热门文章

最新文章