Pytorch中使用torch.nn模块进行神经网络模型初步构造

简介: Pytorch中使用torch.nn模块进行神经网络模型初步构造

一、torch.nn模块的核心数据结构是Module,可表示神经网络中的某个层(layer)比如全连接层;同时也可表示一个包含很多层(递归的体验)的神经网络比如多层感知机,注意:torch.nn.Module能够顺利用autograd自动实现反向传播,所以无需写和人为使用反向传播函数。

二、首先三层感知机构造模型如下图,然后实现逻辑顺序根据第三个部分的代码中(1)到(11)的顺序进行理解。

三、全连接层和三层感知机代码及结果:

import torch as t
from torch import nn
from torch.autograd import Variable as V
class Linear(nn.Module): # 全连接层,继承父类nn.Module
    def __init__(self,in_features,out_feature): # 初始化 (3)
        nn.Module.__init__(self) # 调用nn.Module的构造函数
        # 可学习的参数w和b封装成Parameter,默认可求导
        self.w = nn.Parameter(t.randn(in_features,out_feature))
        self.b = nn.Parameter(t.randn(out_feature))
    def forward(self,x): # 前向传播1,Parameter类型属于variable类型,所以也可以调用对应的函数 (8) (10)
        x = x.mm(self.w)
        y = x + self.b.expand_as(x)
        return y
class Perceptron(nn.Module): # 三层感知机,三层分别是输入层、隐藏层和输出层
    def __init__(self,in_features,hidden_features,out_features): # 初始化(2)
        nn.Module.__init__(self) # 调用nn.Module的构造函数
        self.layer1 = Linear(in_features,hidden_features) # 全连接层1,调用Linear构建
        self.layer2 = Linear(hidden_features,out_features) # 全连接层2,调用Linear构建
    def forward(self,x): # 前向传播2,Parameter类型属于variable类型 (6)
        x = self.layer1(x) # 相当于调用前向传播1 (7)
        x = t.sigmoid(x) # 激活函数使得取值范围在0到1之间
        # print(x.size())
        return self.layer2(x) # 相当于调用前向传播1 (9)
perceptron = Perceptron(3,4,1) # 梦开始的地方,也就是构建感知机,输入层是3,隐藏层是4,输出层是1  (1)
for name,param in perceptron.named_parameters(): # 每层全连接层的可学习参数w和b的维度 (4)
    print(name,param.size()) # 输出参数维度
input = V(t.randn(2,3)) 
output = perceptron(input) # 相当于调用前向传播2 (5)
print(output) # 输出y (11)


相关文章
|
7天前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
36 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
7天前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
31 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
7天前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
93 63
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块
|
7天前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
89 62
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
|
7天前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
34 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
|
11天前
|
机器学习/深度学习 编解码 自动驾驶
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
39 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
11天前
|
机器学习/深度学习 存储
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
37 15
YOLOv11改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
|
9天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
39 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
9天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
25 6
YOLOv11改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 二次创新C3k2 改进颈部网络
|
11天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息
42 9
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 MobileViTv1高效的信息编码与融合模块,获取局部和全局信息