Pytorch实现机器学习之线性回归

简介: Pytorch实现机器学习之线性回归

一、定义

线性回归是机器学习的入门知识,应用十分广泛。线性回归利用数理统计中的回归分析来确定两种或两种以上变量相互依赖的定量关系,其表达式为:y = wx + b + e(此公式采用向量表示法),误差 e 服从均值为0的正态分布。同时定义线性回归的一种损失函数 loss(损失函数一般是预测值和真实值之间的差距) 为:

二、目的

利用随机梯度下降法(每次训练的起点真实数据(x,y)都在变化)更新参数 wb 来实现最小化(min)损失函数 loss ,最终更新学得 wb 的数值,使得预测数据和真实数据更加拟合

三、原理(数学公式推导)

损失函数loss的降低取决于参数wb 的数值,因此最小化(loss)的过程就是最优化方法的过程,采用随机梯度下降法,利用求导和偏导再对参数wb 的数值进行梯度增减变化,最终达到最小化(min loss)。注意下面公式中的 lr 是指学习率(步长),一般由程序员自行设定可调参数大小,但设置值时一般不能太大也不能太小,太大容易无法收敛,太小梯度下降效率太低。xy 表示真实值,y_p = wx + b 表示预测值。

四、完整代码及部分结果

import torch as t
from matplotlib import pyplot as plt
from IPython import display
t.manual_seed(10) # 设置随机数种子,其必要性请参考博主csdn《Pytorch中设计随机数种子的必要性》此篇文章
def get_randn_data(batch_size=8):
    """产生随机数x并给线性函数y=2x+3加上噪声,便于后面学习能否拟合结果"""
    x = t.randn(batch_size,1)*20
    y = x * 2 + (1 + t.randn(batch_size,1))*3
    return x,y # x和y都是tensor
# 随机初始化参数w和零初始化参数b,
w = t.randn(1,1)
b = t.zeros(1,1)
# 设置学习率或者步长,可更改
lr = 0.0001
# 创建列表分别存储参数w和b的变化值
listw = []
listb = []
for count in range(20000): # 训练20000次并测试输出
    # 训练过程
    x,y = get_randn_data() # x,y都是真实数据也就是实际值
    # 前向传播,从头往后传到得出预测值,再得出损失函数下损失值
    y_p = x.mm(w) + b.expand_as(y) # 实现的就是通过参数w和b和因变量x计算预测值y_p = wx + b
    loss = 0.5 * (y_p - y) ** 2 # 实现的就是计算损失函数的损失值loss = 1/2(y_p - y) ** 2
    loss = loss.sum() # loss为tensor格式,所以要计算损失函数的值需要全部加起来得出总和
    # 非调用函数计算梯度,自行设计
    # 反向传播,从后往前传通过梯度下降(求导和偏导)更新w和b,目标是min loss(减小损失值,使得预测值和真实值更加贴近匹配)
    dloss = 1 # loss对loss求导
    dy_p = dloss * (y_p - y) # loss对y_p求偏导
    dw = x.t().mm(dy_p) # loss对w求偏导,使用转置的原因是x是[8,1],dy_p也是[8,1],相乘结果是[1,1]
    # print(dy_p.size())
    db = dy_p.sum() # loss对b求偏导
    # inplace相减实现梯度下降,更新参数w和b
    w.sub_(lr * dw)
    b.sub_(lr * db)
    # 测试输出过程
    # 每训练1000次输出训练实现预测结果一次,画图(线和散点)
    if count % 1000 == 0:
        # 设置画图中横纵坐标的范围
        plt.xlim(0,20)
        plt.ylim(0,45)
        display.clear_output(wait=True) # 清空并显示实时数据动态表示
        # 训练得到的函数模型显示的线性图形
        x1 = t.arange(0,20).view(-1,1) # view为-1时会tensor根据元素自动计算维度大小
        x1 = x1.float()
        y1 = x1.mm(w) + b.expand_as(x1)
        plt.plot(x1.squeeze().numpy(),y1.squeeze().numpy())
        # 随机生成的测试数据,用来检验函数模型是否匹配随机测试数据点状图形
        x2,y2 = get_randn_data(batch_size=20)
        plt.scatter(x2.squeeze().numpy(),y2.squeeze().numpy())
        # 图像输出并在2秒后自动关闭
        plt.show(block=False)
        plt.pause(2)
        plt.close()
        # 输出每次训练后的模型参数w和b的值,也可以看出w和b的变化趋势
        # print(w.squeeze().numpy(), b.squeeze().numpy())
        # 收集参数w和b每次训练变化的值,实现后面参数值线性回归变化点状图的显示
        listw.append((w.squeeze().numpy().tolist())) # tensor->numpy->list
        listb.append((b.squeeze().numpy().tolist()))
# 参数值线性回归变化点状图的显示
plt.title("Point diagram of linear regression change of parameter value")
plt.xlabel("parameter w")
plt.ylabel("parameter b")
plt.scatter(listw,listb)
plt.show(block=False)
plt.pause(30)
plt.close()

五、结果分析

通过可视化图像可以看出,训练的线性回归模型基本上已经能实现和真实测试数据的较好拟合,参数基本上也最终趋于稳定,参数 w = 2,b = 3


相关文章
|
3月前
|
机器学习/深度学习 并行计算 PyTorch
优化技巧与策略:提高 PyTorch 模型训练效率
【8月更文第29天】在深度学习领域中,PyTorch 是一个非常流行的框架,被广泛应用于各种机器学习任务中。然而,随着模型复杂度的增加以及数据集规模的增长,如何有效地训练这些模型成为了一个重要的问题。本文将介绍一系列优化技巧和策略,帮助提高 PyTorch 模型训练的效率。
326 0
|
25天前
|
机器学习/深度学习 数据采集 算法
探索机器学习中的线性回归
【10月更文挑战第25天】本文将深入浅出地介绍线性回归模型,一个在机器学习领域中广泛使用的预测工具。我们将从理论出发,逐步引入代码示例,展示如何利用Python和scikit-learn库实现一个简单的线性回归模型。文章不仅适合初学者理解线性回归的基础概念,同时也为有一定基础的读者提供实践指导。
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
探索机器学习:从线性回归到深度学习
在这篇文章中,我们将一起踏上一场激动人心的旅程,穿越机器学习的广阔天地。我们将从最基本的线性回归开始,逐步深入到复杂的深度学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。让我们一起探索这个充满无限可能的世界吧!
|
1月前
|
机器学习/深度学习 API
机器学习入门(七):线性回归原理,损失函数和正规方程
机器学习入门(七):线性回归原理,损失函数和正规方程
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习:从线性回归到深度学习
【9月更文挑战第4天】在这篇文章中,我们将深入探讨机器学习的世界,从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过实际的代码示例,揭示这些模型背后的数学原理,以及如何在现实世界的问题中应用它们。无论你是初学者还是有经验的数据科学家,这篇文章都将为你提供新的视角和深入的理解。
|
3月前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与CUDA:加速深度学习模型训练的最佳实践
【8月更文第27天】随着深度学习应用的广泛普及,高效利用GPU硬件成为提升模型训练速度的关键。PyTorch 是一个强大的深度学习框架,它支持动态计算图,易于使用且高度灵活。CUDA (Compute Unified Device Architecture) 则是 NVIDIA 开发的一种并行计算平台和编程模型,允许开发者直接访问 GPU 的并行计算能力。本文将详细介绍如何利用 PyTorch 与 CUDA 的集成来加速深度学习模型的训练过程,并提供具体的代码示例。
158 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习的奥秘:从线性回归到深度学习
【8月更文挑战第26天】本文将带领读者走进机器学习的世界,从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将探讨各种算法的原理、应用场景以及实现方法,并通过代码示例加深理解。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供有价值的知识和技能。让我们一起揭开机器学习的神秘面纱,探索这个充满无限可能的领域吧!
|
4月前
|
机器学习/深度学习 自然语言处理 数据挖掘
机器学习不再是梦!PyTorch助你轻松驾驭复杂数据分析场景
【7月更文挑战第31天】机器学习已深深嵌入日常生活,从智能推荐到自动驾驶皆为其应用。PyTorch作为一个开源库,凭借简洁API、动态计算图及GPU加速能力,降低了学习门槛并提高了开发效率。通过一个使用PyTorch构建简单CNN识别MNIST手写数字的例子,展现了如何快速搭建神经网络。随着技能提升,开发者能运用PyTorch及其丰富的生态系统(如torchvision、torchtext和torchaudio)应对复杂场景,如自然语言处理和强化学习。掌握PyTorch,意味着掌握了数据时代的关键技能。
38 1
|
3月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:Python中的线性回归模型实现
【8月更文挑战第24天】在机器学习的世界中,线性回归是最基础也是应用最广泛的算法之一。本文将通过Python编程语言,使用scikit-learn库来实现一个简单的线性回归模型。我们将从理论出发,逐步深入到代码实现,最后通过一个实际数据集来验证模型的效果。无论你是机器学习的初学者,还是想要复习线性回归的基础知识,这篇文章都将为你提供有价值的信息。让我们一起踏上这段探索之旅吧!
|
4月前
|
机器学习/深度学习 数据采集 PyTorch
PyTorch模型训练与部署流程详解
【7月更文挑战第14天】PyTorch以其灵活性和易用性在模型训练与部署中展现出强大的优势。通过遵循上述流程,我们可以有效地完成模型的构建、训练和部署工作,并将深度学习技术应用于各种实际场景中。随着技术的不断进步和应用的深入,我们相信PyTorch将在未来的机器学习和深度学习领域发挥更加重要的作用。
下一篇
无影云桌面