嵌入式开发学习之--RCC(上)

简介: 嵌入式开发学习之--RCC(上)

嵌入式开发学习之--RCC(上)


前言

 之前学习的无论是灯还是蜂鸣器亦或是按键输入,第一步都是要配置时钟,今天主要系统学习一下时钟相关的知识。

提示:以下是本篇文章正文内容,下面案例可供参考

一、RCC简介

 RCC :**reset clock control 复位和时钟控制器。设置系统时钟 SYSCLK、设置 AHB 分频因子(决定 HCLK 等于多少)、设置 APB2 分频因子(决定 PCLK2 等于多少)、设置 APB1 分频因子(决定 PCLK1 等于多少)、设置各个外设的分频因子;控制 AHB、APB2 和 APB1 这三条总线时钟的开启、控制每个外设的时钟的开启。对于 SYSCLK、HCLK、PCLK2、PCLK1 这四个时钟的配置一般是:HCLK = SYSCLK=PLLCLK = 180M,PCLK1=HCLK/2 =90M,PCLK1=HCLK/4 = 45M。这个时钟配置也是库函数的标准配置,我们用的最多的就是这个。

二、系统时钟简介

2.1HSE 高速外部时钟信号

 HSE 是高速的外部时钟信号,可以由有源晶振或者无源晶振提供,频率从 4-26MHZ不等。当使用有源晶振时,时钟从 OSC_IN 引脚进入,OSC_OUT 引脚悬空,当选用无源晶振时,时钟从 OSC_IN 和 OSC_OUT 进入,并且要配谐振电容。HSE 我们使用 25M 的无源晶振。如果我们使用 HSE 或者 HSE 经PLL 倍频之后的时钟作为系统时钟 SYSCLK, 当 HSE 故障时候,不仅 HSE 会被关闭,PLL 也会被关闭,此时高速的内部时钟时钟信号HSI 会作为备用的系统时钟,直到 HSE 恢复正常,HSI=16M。

2.2锁相环 PLL

 PLL 的主要作用是对时钟进行倍频,然后把时钟输出到各个功能部件。PLL 有两个,一个是主 PLL,另外一个是专用的 PLLI2S,他们均由 HSE 或者 HSI 提供时钟输入信号。

 主 PLL 有两路的时钟输出,第一个输出时钟 PLLCLK 用于系统时钟,F429 里面最高是 180M,第二个输出用于 USB OTG FS 的时钟(48M)、RNG 和 SDIO 时钟(<=48M)。专用的 PLLI2S 用于生成精确时钟,给 I2S 提供时钟。

 HSE 或者 HSI 经过 PLL 时钟输入分频因子 M(2~63)分频后,成为 VCO 的时钟输入,VCO 的时钟必须在 1~2M 之间,我们选择 HSE=25M 作为 PLL 的时钟输入,M 设置为 25,那么 VCO 输入时钟就等于 1M。

 VCO 输入时钟经过 VCO 倍频因子 N 倍频之后,成为 VCO 时钟输出,VCO 时钟必须在 192~432M 之间。我们配置 N 为 360,则 VCO 的输出时钟等于 360M。如果要把系统时钟超频,就得在 VCO 倍频系数 N 这里做手脚。PLLCLK_OUTMAX = VCOCLK_OUTMAX/P_MIN = 432/2=216M,即 F429 最高可超频到 216M。

VCO 输出时钟之后有三个分频因子:PLLCLK 分频因子 p,USB OTG FS/RNG/SDIO时钟分频因子 Q,分频因子 R(F446 才有,F429 没有)。p 可以取值 2、4、6、8,我们配置为 2,则得到 PLLCLK=180M。Q 可以取值 4~15,但是 USB OTG FS 必须使用 48M,Q=VCO 输出时钟 360/48=7.5,出现了小数这明显是错误,权衡之策是是重新配置 VCO 的倍频因子 N=336,VCOCLK=1M*336=336M,PLLCLK=VCOCLK/2=168M,USBCLK=336/7=48M,细心的读者应该发现了,在使用 USB 的时候,PLLCLK 被降低到了 168M,不能使用 180M,这实乃 ST 的一个奇葩设计。有关 PLL 的配置有一个专门的RCC PLL 配置寄存器 RCC_PLLCFGR,具体描述看手册即可。

 PLL 的时钟配置经过,稍微整理下可由如下公式表达:

 VCOCLK_IN = PLLCLK_IN / M = HSE / 25 = 1M

 VCOCLK_OUT = VCOCLK_IN * N = 1M * 360 = 360M

 PLLCLK_OUT=VCOCLK_OUT/P=360/2=180M

 USBCLK = VCOCLK_OUT/Q=360/7=51.7。暂时这样配置,到真正使用 USB 的时候会重新配置。

2.3系统时钟 SYSCLK

 系统时钟来源可以是:HSI、PLLCLK、HSE,具体的由时钟配置寄存器 RCC_CFGR的 SW 位配置。我们这里设置系统时钟:SYSCLK = PLLCLK = 180M。如果系统时钟是由HSE 经过 PLL 倍频之后的 PLLCLK 得到,当 HSE 出现故障的时候,系统时钟会切换为HSI=16M,直到 HSE 恢复正常为止。

2.4AHB 总线时钟 HCLK

 系统时钟 SYSCLK 经过 AHB 预分频器分频之后得到时钟叫 APB 总线时钟,即 HCLK,分频因子可以是:[1,2,4,8,16,64,128,256,512],具体的由时钟配置寄存器RCC_CFGR 的 HPRE 位设置。片上大部分外设的时钟都是经过 HCLK 分频得到,至于 AHB总线上的外设的时钟设置为多少,得等到我们使用该外设的时候才设置,我们这里只需粗线条的设置好 APB 的时钟即可。我们这里设置为 1 分频,即 HCLK=SYSCLK=180M。

2.5 APB2 总线时钟 HCLK2

 APB2 总线时钟 PCLK2 由 HCLK 经过高速 APB2 预分频器得到,分频因子可以是:[1,2,4,8,16],具体由时钟配置寄存器 RCC_CFGR 的 PPRE2 位设置。HCLK2 属于高速的总线时钟,片上高速的外设就挂载到这条总线上,比如全部的 GPIO、USART1、SPI1等。至于 APB2 总线上的外设的时钟设置为多少,得等到我们使用该外设的时候才设置,我们这里只需粗线条的设置好 APB2 的时钟即可。我们这里设置为 2 分频,即 PCLK2 = HCLK /2= 90M。

2.6 APB1 总线时钟 HCLK1

 APB1 总线时钟 PCLK1 由 HCLK 经过低速 APB 预分频器得到,分频因子可以是:[1,2,4, 8,16],具体由时钟配置寄存器 RCC_CFGR 的 PPRE1 位设置。

 HCLK1 属于低速的总线时钟,最高为 45M,片上低速的外设就挂载到这条总线上,比如USART2/3/4/5、SPI2/3,I2C1/2 等。至于 APB1 总线上的外设的时钟设置为多少,得等到我们使用该外设的时候才设置,我们这里只需粗线条的设置好 APB1 的时钟即可。我们这里设置为 4 分频,即 PCLK1 = HCLK/4 = 45M。

三、其他时钟

3.1RTC 时钟

 RTCCLK 时钟源可以是 HSE 1 MHz( HSE 由一个可编程的预分频器分频)、 LSE 或 者 LSI 时钟。选择方式是编程 RCC 备份域控制寄存器 (RCC_BDCR) 中的 RTCSEL[1:0] 位 和 RCC 时钟配置寄存器 (RCC_CFGR) 中RTCPRE[4:0] 位。所做的选择只能通过复位备份域的方式修改。我们通常的做法是由 LSE 给 RTC 提供时钟,大小为 32.768KHZ。LSE由外接的晶体谐振器产生,所配的谐振电容精度要求高,不然很容易不起震。

3.2独立看门狗时钟

 独立看门狗时钟由内部的低速时钟 LSI 提供,大小为 32KHZ。

3.3 I2S 时钟

 I2S 时钟可由外部的时钟引脚 I2S_CKIN 输入,也可由专用的 PLLI2SCLK 提供,具体的由 RCC 时钟配置寄存器 (RCC_CFGR)的 I2SSCR 位配置。我们在使用 I2S 外设驱动W8978 的时候,使用的时钟是 PLLI2SCLK,这样就可以省掉一个有源晶振。

3.4PHY 以太网时钟

 F429 要想实现以太网功能,除了有本身内置的 MAC 之外,还需要外接一个 PHY 芯片,常见的 PHY 芯片有 DP83848 和 LAN8720,其中 DP83848 支持 MII 和 RMII 接口,LAN8720 只支持 RMII 接口。野火 F429 开发板用的是 RMII 接口,选择的 PHY 芯片是LAB8720。使用 RMII 接口的好处是使用的 IO 减少了一半,速度还是跟 MII 接口一样。当使用 RMII 接口时,PHY 芯片只需输出一路时钟给 MCU 即可,如果是 MII 接口,PHY 芯片则需要提供两路时钟给 MCU。

3.5USB PHY 时钟

 F429 的 USB 没有集成 PHY,要想实现 USB 高速传输的话,必须外置 USB PHY 芯片,常用的芯片是 USB3300。当外接 USB PHY 芯片时,PHY 芯片需要给 MCU 提供一个时钟。

 外扩 USB3300 会占用非常多的 IO,跟 SDRAM 和 RGB888 的 IO 会复用的很厉害,鉴于 USB 高速传输用的比较少,野火 429 就没有外扩这个芯片。

3.6MCO 时钟输出

 MCO 是 microcontroller clock output 的缩写,是微控制器时钟输出引脚,主要作用是可以对外提供时钟,相当于一个有源晶振。F429 中有两个 MCO,由 PA8/PC9 复用所得。MCO1 所需的时钟源通过 RCC 时钟配置寄存器(RCC_CFGR) 中的 MCO1PRE[2:0] 和MCO1[1:0]位选择。MCO2 所需的时钟源通过 RCC 时钟配置寄存器 (RCC_CFGR) 中的MCO2PRE[2:0] 和 MCO2 位选择。有关 MCO 的 IO、时钟选择和输出速率的具体信息如下表所示:

总结

 时钟的种类很多,实战中当我们用到不同的外设时,对相应的时钟进行配置就可以了。本篇了解为主,用到时会查就行了。下一章通过实验来具体配置一个时钟。

相关文章
|
5天前
|
传感器 C++
精通嵌入式开发:从原理到实践
嵌入式开发是一门涉及硬件和软件交叉领域的技术,要想精通这门技术,需要从理论基础到实际操作都有深入的了解和实践。
17 3
|
7月前
|
传感器 C语言 芯片
「入门指南」轻松学习嵌入式 GPIO:从原理到应用一步到位
「入门指南」轻松学习嵌入式 GPIO:从原理到应用一步到位
|
7月前
|
传感器 开发工具 数据安全/隐私保护
嵌入式开发
一、嵌入式开发是什么 嵌入式开发是指在嵌入式系统中进行软件开发的过程。嵌入式系统是一种特殊的计算机系统,它被设计用于执行特定的任务,通常嵌入在其他设备或系统中,如家电、汽车、医疗设备等。嵌入式开发涉及到设计、编写和调试嵌入式系统的软件,以满足特定的需求和功能要求。 嵌入式开发通常需要掌握特定的编程语言和开发工具,如C、C++、汇编语言等。开发人员需要了解硬件平台的特性和限制,以便进行有效的软件设计和优化。嵌入式开发还涉及到驱动程序的开发、实时操作系统的使用、硬件接口的编程等。 嵌入式开发的目标是开发出高效、可靠、节能的嵌入式软件,以满足特定应用的需求。嵌入式系统的应用范围广泛,从智能手机到工业
76 0
|
前端开发
嵌入式开发学习之--RCC(下)
嵌入式开发学习之--RCC(下)
嵌入式开发学习之--RCC(下)
|
内存技术
嵌入式开发学习之--位带操作
嵌入式开发学习之--位带操作
|
芯片 开发者
嵌入式开发学习之--串口通讯(上)
嵌入式开发学习之--串口通讯(上)
嵌入式开发学习之--串口通讯(上)
|
存储 Java 数据安全/隐私保护
嵌入式开发学习之--串口通讯(下)
嵌入式开发学习之--串口通讯(下)
嵌入式开发学习之--串口通讯(下)
|
机器人 C++
基于stm32的嵌入式开发学习之--前言
基于stm32的嵌入式开发学习之--前言
|
存储 小程序 编译器
【从零开始的嵌入式生活】必备基础知识1——数据的表示和程序编译调试
【从零开始的嵌入式生活】必备基础知识1——数据的表示和程序编译调试
【从零开始的嵌入式生活】必备基础知识1——数据的表示和程序编译调试
|
Ubuntu Linux 编译器
【从零开始的嵌入式生活】必备基础知识,从环境安装开始(1)
【从零开始的嵌入式生活】必备基础知识,从环境安装开始(1)
【从零开始的嵌入式生活】必备基础知识,从环境安装开始(1)