题目
从底层分析LockSupport原理机制
知识点
LockSupport的介绍
LockSupport类是Java6(JSR166-JUC)引入的一个类,提供了基本的线程同步原语。LockSupport实际上是调用了Unsafe类里的函数,归结到Unsafe里,只有两个函数,而仅仅两个简单的接口,就为上层提供了强大的同步原语,先来解析下两个函数是做什么的。
public native void unpark(Thread jthread); public native void park(boolean isAbsolute, long time); 复制代码
- park:阻塞当前线程(Block current thread),字面理解park,就算占住,停车的时候不就把这个车位给占住了么?起这个名字还是很形象的。
- isAbsolute参数是指明时间是否属于绝对。
- time参数是指时间值
线程调用park函数则等待"许可"。
- unpark: 使给定的线程停止阻塞(Unblock the given thread blocked)。
- thread参数是指对相应的线程进行解除阻塞。
线程调用unpark函数为线程提供"许可(permit)"。
- 这个有点像信号量,但是这个"许可"是不能叠加的,"许可"是一次性的。
- 比如,线程B连续调用了三次unpark函数,当线程A调用park函数就使用掉这个"许可",如果线程A再次调用park,则进入等待状态。
注意,unpark函数可以先于park调用。比如线程B调用unpark函数,给线程A发了一个"许可",那么当线程A调用park时,它发现已经有"许可"了,那么它会马上再继续运行。(此部分比wait/notify(notifyAll))要好很多。
park和unpark的灵活之处
unpark函数可以先于park调用,这个正是它们的灵活之处。
- 一个线程它有可能在别的线程unPark之前,或者之后,或者同时调用了park,那么因为park的特性,它可以不用担心自己的park的时序问题,否则,如果park必须要在unpark之前。
考虑一下,两个线程同步,要如何处理?
- 在Java5里是用wait/notify/notifyAll来同步的。wait/notify机制有个很蛋疼的地方是,比如线程B要用notify通知线程A,那么线程B要确保线程A已经在wait调用上等待了,否则线程A可能永远都在等待。
另外,是调用notify,还是notifyAll?
notify只会唤醒一个线程,如果错误地有两个线程在同一个对象上wait等待,那么又悲剧了。为了安全起见,貌似只能调用notifyAll了。
park/unpark模型真正解耦了线程之间的同步,线程之间不再需要一个Object或者其它变量来存储状态,不再需要关心对方的状态。
拓展延伸
HotSpot里park/unpark的实现,每个java线程都有一个Parker实例,Parker类是这样定义的:
class Parker : public os::PlatformParker { private: volatile int _counter ; ... public: void park(bool isAbsolute, jlong time); void unpark(); ... } class PlatformParker : public CHeapObj<mtInternal> { protected: pthread_mutex_t _mutex [1] ; pthread_cond_t _cond [1] ; ... } 复制代码
- 可以看到Parker类实际上用Posix的mutex,condition来实现的。
- 在Parker类里的_counter字段,就是用来记录所谓的“许可”的。
- 当调用park时,先尝试直接能否直接拿到"许可",即_counter>0时,如果成功,则把_counter设置为0,并返回:(和信号量的思路很像!)
void Parker::park(bool isAbsolute, jlong time) { // Ideally we'd do something useful while spinning, such // as calling unpackTime(). // Optional fast-path check: // Return immediately if a permit is available. // We depend on Atomic::xchg() having full barrier semantics // since we are doing a lock-free update to _counter. if (Atomic::xchg(0, &_counter) > 0) return; 复制代码
如果不成功,则构造一个ThreadBlockInVM,然后检查_counter是不是>0,如果是,则把_counter设置为0,unlock mutex并返回:
ThreadBlockInVM tbivm(jt); if (_counter > 0) { // no wait needed _counter = 0; status = pthread_mutex_unlock(_mutex); 复制代码
否则,再判断等待的时间,然后再调用pthread_cond_wait函数等待,如果等待返回,则把_counter设置为0,unlock mutex并返回:
if (time == 0) { status = pthread_cond_wait (_cond, _mutex) ; } _counter = 0 ; status = pthread_mutex_unlock(_mutex) ; assert_status(status == 0, status, "invariant") ; OrderAccess::fence(); 复制代码
当unpark时,则简单多了,直接设置_counter为1,再unlock mutext返回。如果_counter之前的值是0,则还要调用pthread_cond_signal唤醒在park中等待的线程:
void Parker::unpark() { int s, status ; status = pthread_mutex_lock(_mutex); assert (status == 0, "invariant") ; s = _counter; _counter = 1; if (s < 1) { if (WorkAroundNPTLTimedWaitHang) { status = pthread_cond_signal (_cond) ; assert (status == 0, "invariant") ; status = pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; } else { status = pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; status = pthread_cond_signal (_cond) ; assert (status == 0, "invariant") ; } } else { pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; } } 复制代码
- 用mutex和condition保护了一个_counter的变量,当park时,这个变量置为了0,当unpark时,这个变量置为1。
- 值得注意的是在park函数里,调用pthread_cond_wait时,并没有用while来判断,所以posix condition里的"Spurious wakeup"一样会传递到上层Java的代码里。
if (time == 0) { status = pthread_cond_wait (_cond, _mutex) ; } 复制代码
这也就是为什么Java dos里提到,当下面三种情况下park函数会返回:
Some other thread invokes unpark with the current thread as the target; or Some other thread interrupts the current thread; or The call spuriously (that is, for no reason) returns. 复制代码
相关的实现代码在:
hg.openjdk.java.net/build-infra…hg.openjdk.java.net/build-infra…hg.openjdk.java.net/build-infra…hg.openjdk.java.net/build-infra…
其它的一些东东: Parker类在分配内存时,使用了一个技巧,重载了new函数来实现了cache line对齐。
// We use placement-new to force ParkEvent instances to be // aligned on 256-byte address boundaries. This ensures that the least // significant byte of a ParkEvent address is always 0. void * operator new (size_t sz) ; Parker里使用了一个无锁的队列在分配释放Parker实例: 复制代码
volatile int Parker::ListLock = 0 ; Parker * volatile Parker::FreeList = NULL ; Parker * Parker::Allocate (JavaThread * t) { guarantee (t != NULL, "invariant") ; Parker * p ; // Start by trying to recycle an existing but unassociated // Parker from the global free list. for (;;) { p = FreeList ; if (p == NULL) break ; // 1: Detach // Tantamount to p = Swap (&FreeList, NULL) if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) { continue ; } // We've detached the list. The list in-hand is now // local to this thread. This thread can operate on the // list without risk of interference from other threads. // 2: Extract -- pop the 1st element from the list. Parker * List = p->FreeNext ; if (List == NULL) break ; for (;;) { // 3: Try to reattach the residual list guarantee (List != NULL, "invariant") ; Parker * Arv = (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ; if (Arv == NULL) break ; // New nodes arrived. Try to detach the recent arrivals. if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) { continue ; } guarantee (Arv != NULL, "invariant") ; // 4: Merge Arv into List Parker * Tail = List ; while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ; Tail->FreeNext = Arv ; } break ; } if (p != NULL) { guarantee (p->AssociatedWith == NULL, "invariant") ; } else { // Do this the hard way -- materialize a new Parker.. // In rare cases an allocating thread might detach // a long list -- installing null into FreeList --and // then stall. Another thread calling Allocate() would see // FreeList == null and then invoke the ctor. In this case we // end up with more Parkers in circulation than we need, but // the race is rare and the outcome is benign. // Ideally, the # of extant Parkers is equal to the // maximum # of threads that existed at any one time. // Because of the race mentioned above, segments of the // freelist can be transiently inaccessible. At worst // we may end up with the # of Parkers in circulation // slightly above the ideal. p = new Parker() ; } p->AssociatedWith = t ; // Associate p with t p->FreeNext = NULL ; return p ; } void Parker::Release (Parker * p) { if (p == NULL) return ; guarantee (p->AssociatedWith != NULL, "invariant") ; guarantee (p->FreeNext == NULL , "invariant") ; p->AssociatedWith = NULL ; for (;;) { // Push p onto FreeList Parker * List = FreeList ; p->FreeNext = List ; if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ; } }