Java 多线程之间如何通知通信

简介: Java 多线程之间如何通知通信

需求:


有两个线程,A 线程向一个集合里面依次添加元素“123”字符串,一共添加十次,当添加到第五次的时候,希望 B 线程能够收到 A 线程的通知,然后 B 线程执行相关的业务操作。线程间通信的模型有两种:共享内存和消息传递,以下方式都是基本这两种模型来实现的。


1.使用 volatile 关键字


基于 volatile 关键字来实现线程间相互通信是使用共享内存的思想。大致意思就是多个线程同时监听一个变量,当这个变量发生变化的时候 ,线程能够感知并执行相应的业务。这也是最简单的一种实现方式

//定义共享变量来实现通信,它需要volatile修饰,否则线程不能及时感知
    static volatile boolean notice = false;
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        //线程A
        Thread threadA = new Thread(() -> {
            for (int i = 1; i <= 10; i++) {
                list.add("123");
                System.out.println("线程A添加元素,此时list的size为:" + list.size());
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                if (list.size() == 5){
                    notice = true;
                }
            }
        });
        //线程B
        Thread threadB = new Thread(() -> {
            while (true) {
                if (notice) {
                    System.out.println("线程B收到通知,开始执行自己的业务...");
                    break;
                }
            }
        });
        //需要先启动线程B
        threadB.start();
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        // 再启动线程A
        threadA.start();
    }


2.使用 Object 类的 wait()/notify()


Object 类提供了线程间通信的方法:wait()、notify()、notifyAll(),它们是多线程通信的基础,而这种实现方式的思想自然是线程间通信。


注意:wait/notify 必须配合 synchronized 使用,wait 方法释放锁,notify 方法不释放锁。wait 是指在一个已经进入了同步锁的线程内,让自己暂时让出同步锁,以便其他正在等待此锁的线程可以得到同步锁并运行,只有其他线程调用了notify(),notify并不释放锁,只是告诉调用过wait()的线程可以去参与获得锁的竞争了,但不是马上得到锁,因为锁还在别人手里,别人还没释放,调用 wait() 的一个或多个线程就会解除 wait 状态,重新参与竞争对象锁,程序如果可以再次得到锁,就可以继续向下运行。

//定义一个锁对象
        Object lock = new Object();
        List<String>  list = new ArrayList<>();
        // 线程A
        Thread threadA = new Thread(() -> {
            synchronized (lock) {
                for (int i = 1; i <= 10; i++) {
                    list.add("123");
                    System.out.println("线程A添加元素,此时list的size为:" + list.size());
                    try {
                        Thread.sleep(500);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    if (list.size() == 5){
                        lock.notify();//唤醒B线程
                    }
                }
            }
        });
        //线程B
        Thread threadB = new Thread(() -> {
            while (true) {
                synchronized (lock) {
                    if (list.size() != 5) {
                        try {
                            lock.wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                    System.out.println("线程B收到通知,开始执行自己的业务...");
                }
            }
        });
        //需要先启动线程B
        threadB.start();
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        //再启动线程A
        threadA.start();

1673431954858.jpg

由输出结果,在线程 A 发出 notify() 唤醒通知之后,依然是走完了自己线程的业务之后,线程 B 才开始执行,正好说明 notify() 不释放锁,而 wait() 释放锁。


3.使用JUC工具类 CountDownLatch


jdk1.5 之后在java.util.concurrent包下提供了很多并发编程相关的工具类,简化了并发编程代码的书写,CountDownLatch 基于 AQS 框架,相当于也是维护了一个线程间共享变量 state。

CountDownLatch countDownLatch = new CountDownLatch(1);
        List<String> list = new ArrayList<>();
        //线程A
        Thread threadA = new Thread(() -> {
            for (int i = 1; i <= 10; i++) {
                list.add("123");
                System.out.println("线程A添加元素,此时list的size为:" + list.size());
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                if (list.size() == 5){
                    countDownLatch.countDown();
                }
            }
        });
        //线程B
        Thread threadB = new Thread(() -> {
            while (true) {
                if (list.size() != 5) {
                    try {
                        countDownLatch.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                System.out.println("线程B收到通知,开始执行自己的业务...");
                break;
            }
        });
        //需要先启动线程B
        threadB.start();
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        //再启动线程A
        threadA.start();


4.使用 ReentrantLock 结合 Condition


ReentrantLock lock = new ReentrantLock();
        Condition condition = lock.newCondition();
        List<String> list = new ArrayList<>();
        //线程A
        Thread threadA = new Thread(() -> {
            lock.lock();
            for (int i = 1; i <= 10; i++) {
                list.add("123");
                System.out.println("线程A添加元素,此时list的size为:" + list.size());
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                if (list.size() == 5){
                    condition.signal();
                }
            }
            lock.unlock();
        });
        //线程B
        Thread threadB = new Thread(() -> {
            lock.lock();
            if (list.size() != 5) {
                try {
                    condition.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            System.out.println("线程B收到通知,开始执行自己的业务...");
            lock.unlock();
        });
        threadB.start();
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        threadA.start();


这种方式使用起来并不是很好,代码编写复杂,而且线程 B 在被 A 唤醒之后由于没有获取锁还是不能立即执行,也就是说,A 在唤醒操作之后,并不释放锁。这种方法跟 Object 的 wait()/notify() 一样。


await:释放当前锁持有的锁,生成线程等待node,存储到condition中的单链表中,等被唤醒的时候,在加入到锁的等待队列


signal:唤醒condition等待队列里的一个线程(firstWaiter)


signalAll: 循环唤醒condition等待队列里的所有线程


5.基本 LockSupport 实现线程间的阻塞和唤醒


LockSupport 是一种非常灵活的实现线程间阻塞和唤醒的工具,使用它不用关注是等待线程先进行还是唤醒线程先运行,但是得知道线程的名字。

List<String> list = new ArrayList<>();
        //线程B
        final Thread threadB = new Thread(() -> {
            if (list.size() != 5) {
                LockSupport.park();
            }
            System.out.println("线程B收到通知,开始执行自己的业务...");
        });
        //线程A
        Thread threadA = new Thread(() -> {
            for (int i = 1; i <= 10; i++) {
                list.add("123");
                System.out.println("线程A添加元素,此时list的size为:" + list.size());
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                if (list.size() == 5){
                    LockSupport.unpark(threadB);
                }
            }
        });
        threadA.start();
        threadB.start();
相关文章
|
6天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
3天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
16 9
|
6天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
2天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
6天前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
15 3
|
4天前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
|
5天前
|
Java
java小知识—进程和线程
进程 进程是程序的一次执行过程,是系统运行的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。简单来说,一个进程就是一个执行中的程序,它在计算机中一个指令接着一个指令地执行着,同时,每个进程还占有某些系统资源如CPU时间,内存空间,文件,文件,输入输出设备的使用权等等。换句话说,当程序在执行时,将会被操作系统载入内存中。 线程 线程,与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中产生多个线程。与进程不同的是同类的多个线程共享同一块内存空间和一组系统资源,所以系统在产生一个线程,或是在各个线程之间做切换工作时,负担要比
14 1
|
6天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
6天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
29 1
|
10天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####