【JVM原理探索】彻底弄清楚Minor GC和Major GC及Full GC

简介: 【JVM原理探索】彻底弄清楚Minor GC和Major GC及Full GC

前提概要


对于JVM而言,最难能够掌握的就是GC回收部分的研究和探索。而对于虚拟机而言根据不同的区域以及范围和方案分为Minor GC、Major GC和Full GC等,此处暂时不描述Mixed GC,后续章节会详细做专题探究。




GC的引入


堆内存划分为Eden、Survivor(2)和Tenured/Old空间。




发生在年轻代的GC——Minor GC


image.png

其中Minor GC如下图所示


  • 虚拟机给每个对象定义一个对象年龄(Age)计数器。对象在Eden生并经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,将被移动到Survivor空间中,并将对象年龄设为 1。
  • 对象在Survivor区中每熬过一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁)时,就会被晋升到老年代中。
  • 对象晋升老年代的年龄阈值,可以通过参数-XX:MaxTenuringThreshold来设置



image.png




从年轻代空间(包括Eden和Survivor区域)回收内存被称为Minor GC。这一定义既清晰又易于理解,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快。


  • JVM无法为一个新的对象分配空间时会触发Minor GC,比如当Eden区满了。所以分配率越高,越频繁执行Minor GC。


  • 内存池被填满的时候,其中的内容全部会被复制,指针会从0开始跟踪空闲内存。


  • Eden和Survivor区进行了标记和复制操作,取代了经典的标记、扫描、压缩、清理操作。


  • 所以Eden和Survivor区不存在内存碎片,写指针总是停留在所使用内存池的顶部。


  • 执行Minor GC操作时,不会影响到方法区从方法区到年轻代的引用被当成GCRoots,从年轻代到方法区的引用在标记阶段被直接忽略掉


  • 质疑常规的认知,所有的Minor GC都会触发 “全世界的暂停(stop-the-world)”,停止应用程序的线程。对于大部分应用程序,停顿导致的延迟都是可以忽略不计的。


  • 其中的真相就是,大部分Eden区中的对象都能被认为是垃圾,永远也不会被复制到Survivor区或者老年代空间。


  • 如果正好相反,Eden区大部分新生对象不符合GC条件,Minor GC执行时暂停的时间将会长很多。




Minor GC触发机制:


当年轻代满时就会触发Minor GC,这里的年轻代满指的是Eden代满,Survivor满不会引发GC。



发生在老年代的GC——Major GC/Full GC



  • Major GC:主要是清理老年代:MajorGC的速度一般会比Minor GC慢 10倍以上
  • Full GC:主要是清理整个堆空间—包括年轻代和老年代。


  1. 首先,许多Major GC是由Minor GC触发,所以很多情况下将这两种GC分离是不太可能的。
  2. 另一方面,许多现代垃圾收集机制会清理部分老年代空间,所以使用“cleaning”一词只是部分正确。


这使得我们不用去关心到底是叫Major GC还是Full GC,大家应该关注当前的GC是否停止了所有应用程序的线程,还是能够并发的处理而不用停掉应用程序的线程。


老年代GC(Major GC/Full GC):指发生在老年代的GC,出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,ParallelScavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)





Full GC触发机制:


  • (1)调用System.gc时,系统建议执行Full GC,但是不必然执行


  • (2)老年代空间不足


  • (3)方法区空间不足:当永久代/元数据空间满时也会引发Full GC,会导致Class、Method元信息的卸载。


  • (4)通过Minor GC后进入老年代的平均大小大于老年代的可用内存


  • (5)由Eden区、survivor space1(From Space)区向survivor space2(To Space)区复制时,对象大小大于To Space可用内存,则把该对象转存到老年代,且老年代的可用内存小于该对象大小


Full GC定义是相对明确的,就是针对整个新生代、老生代、元空间(metaspace,java8以上版本取代perm gen)的全局范围的GC

Minor GC和Major GC是俗称,在Hotspot JVM实现的Serial GC, Parallel GC, CMS, G1 GC中大致可以对应到某个Young GC和Old GC算法组合




第一次尝试通过 jstat 输出:

my-precious: me$ jstat -gc -t 4235 1s
复制代码


Time S0C    S1C    S0U    S1U      EC       EU        OC         OU       MC     MU    CCSC   CCSU   YGC     YGCT    FGC    FGCT     GCT   
 5.7 34048.0 34048.0  0.0   34048.0 272640.0 194699.7 1756416.0   181419.9  18304.0 17865.1 2688.0 2497.6      3    0.275   0      0.000    0.275
 6.7 34048.0 34048.0 34048.0  0.0   272640.0 247555.4 1756416.0   263447.9  18816.0 18123.3 2688.0 2523.1      4    0.359   0      0.000    0.359
 7.7 34048.0 34048.0  0.0   34048.0 272640.0 257729.3 1756416.0   345109.8  19072.0 18396.6 2688.0 2550.3      5    0.451   0      0.000    0.451
 8.7 34048.0 34048.0 34048.0 34048.0 272640.0 272640.0 1756416.0  444982.5  19456.0 18681.3 2816.0 2575.8      7    0.550   0      0.000    0.550
 9.7 34048.0 34048.0 34046.7  0.0   272640.0 16777.0  1756416.0   587906.3  20096.0 19235.1 2944.0 2631.8      8    0.720   0      0.000    0.720
10.7 34048.0 34048.0  0.0   34046.2 272640.0 80171.6  1756416.0   664913.4  20352.0 19495.9 2944.0 2657.4      9    0.810   0      0.000    0.810
11.7 34048.0 34048.0 34048.0  0.0   272640.0 129480.8 1756416.0   745100.2  20608.0 19704.5 2944.0 2678.4     10    0.896   0      0.000    0.896
12.7 34048.0 34048.0  0.0   34046.6 272640.0 164070.7 1756416.0   822073.7  20992.0 19937.1 3072.0 2702.8     11    0.978   0      0.000    0.978
13.7 34048.0 34048.0 34048.0  0.0   272640.0 211949.9 1756416.0   897364.4  21248.0 20179.6 3072.0 2728.1     12    1.087   1      0.004    1.091
14.7 34048.0 34048.0  0.0   34047.1 272640.0 245801.5 1756416.0   597362.6  21504.0 20390.6 3072.0 2750.3     13    1.183   2      0.050    1.233
15.7 34048.0 34048.0  0.0   34048.0 272640.0 21474.1  1756416.0   757347.0  22012.0 20792.0 3200.0 2791.0     15    1.336   2      0.050    1.386
16.7 34048.0 34048.0 34047.0  0.0   272640.0 48378.0  1756416.0   838594.4  22268.0 21003.5 3200.0 2813.2     16    1.433   2      0.050    1.484
复制代码



这个片段是 JVM 启动后第17秒提取的。基于该信息,我们可以得出这样的结果,运行了12次 Minor GC、2次 Full GC,时间总跨度为50毫秒。

java -XX:+PrintGCDetails -XX:+UseConcMarkSweepGC eu.plumbr.demo.GarbageProducer

3.157: [GC (Allocation Failure) 3.157: [ParNew: 272640K->34048K(306688K), 0.0844702 secs] 272640K->69574K(2063104K), 0.0845560 secs] [Times: user=0.23 sys=0.03, real=0.09 secs] 
4.092: [GC (Allocation Failure) 4.092: [ParNew: 306688K->34048K(306688K), 0.1013723 secs] 342214K->136584K(2063104K), 0.1014307 secs] [Times: user=0.25 sys=0.05, real=0.10 secs] 
... cut for brevity ...
11.292: [GC (Allocation Failure) 11.292: [ParNew: 306686K->34048K(306688K), 0.0857219 secs] 971599K->779148K(2063104K), 0.0857875 secs] [Times: user=0.26 sys=0.04, real=0.09 secs] 
12.140: [GC (Allocation Failure) 12.140: [ParNew: 306688K->34046K(306688K), 0.0821774 secs] 1051788K->856120K(2063104K), 0.0822400 secs] [Times: user=0.25 sys=0.03, real=0.08 secs] 
12.989: [GC (Allocation Failure) 12.989: [ParNew: 306686K->34048K(306688K), 0.1086667 secs] 1128760K->931412K(2063104K), 0.1087416 secs] [Times: user=0.24 sys=0.04, real=0.11 secs] 
13.098: [GC (CMS Initial Mark) [1 CMS-initial-mark: 897364K(1756416K)] 936667K(2063104K), 0.0041705 secs] [Times: user=0.02 sys=0.00, real=0.00 secs] 
13.102: [CMS-concurrent-mark-start]
13.341: [CMS-concurrent-mark: 0.238/0.238 secs] [Times: user=0.36 sys=0.01, real=0.24 secs] 
13.341: [CMS-concurrent-preclean-start]
13.350: [CMS-concurrent-preclean: 0.009/0.009 secs] [Times: user=0.03 sys=0.00, real=0.01 secs] 
13.350: [CMS-concurrent-abortable-preclean-start]
13.878: [GC (Allocation Failure) 13.878: [ParNew: 306688K->34047K(306688K), 0.0960456 secs] 1204052K->1010638K(2063104K), 0.0961542 secs] [Times: user=0.29 sys=0.04, real=0.09 secs] 
14.366: [CMS-concurrent-abortable-preclean: 0.917/1.016 secs] [Times: user=2.22 sys=0.07, real=1.01 secs] 
14.366: [GC (CMS Final Remark) [YG occupancy: 182593 K (306688 K)]14.366: [Rescan (parallel) , 0.0291598 secs]14.395: [weak refs processing, 0.0000232 secs]14.395: [class unloading, 0.0117661 secs]14.407: [scrub symbol table, 0.0015323 secs]14.409: [scrub string table, 0.0003221 secs][1 CMS-remark: 976591K(1756416K)] 1159184K(2063104K), 0.0462010 secs] [Times: user=0.14 sys=0.00, real=0.05 secs] 
14.412: [CMS-concurrent-sweep-start]
14.633: [CMS-concurrent-sweep: 0.221/0.221 secs] [Times: user=0.37 sys=0.00, real=0.22 secs] 
14.633: [CMS-concurrent-reset-start]
14.636: [CMS-concurrent-reset: 0.002/0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
复制代码



在点头同意这个结论之前,让我们看看来自同一个 JVM 启动收集的垃圾收集日志的输出。显然- XX : + PrintGCDetails 告诉我们一个不同且更详细的故事:


基于这些信息,我们可以看到12次 Minor GC 后开始有些和上面不一样了。没有运行两次Full GC,这不同的地方在于单个GC在永久代中不同阶段运行了两次:


最初的标记阶段,用了0.0041705秒也就是4ms左右。这个阶段会暂停“全世界( stop-the-world)”的事件,停止所有应用程序的线程,然后开始标记。



并行执行标记和清洗阶段。这些都是和应用程序线程并行的。 最后 Remark 阶段,花费了0.0462010秒约46ms。这个阶段会再次暂停所有的事件。 并行执行清理操作。正如其名,此阶段也是并行的,不会停止其他线程。


所以,正如我们从垃圾回收日志中所看到的那样,实际上只是执行了 Major GC 去清理老年代空间而已,而不是执行了两次 Full GC。







相关文章
|
4月前
|
Arthas 监控 Java
(十一)JVM成神路之性能调优篇:GC调优、Arthas工具详解及各场景下线上最佳配置推荐
“在当前的互联网开发模式下,系统访问量日涨、并发暴增、线上瓶颈等各种性能问题纷涌而至,性能优化成为了现时代开发过程中炙手可热的名词,无论是在开发、面试过程中,性能优化都是一个常谈常新的话题”。
404 3
|
1月前
|
缓存 算法 Java
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
这篇文章详细介绍了Java虚拟机(JVM)中的垃圾回收机制,包括垃圾的定义、垃圾回收算法、堆内存的逻辑分区、对象的内存分配和回收过程,以及不同垃圾回收器的工作原理和参数设置。
55 4
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
|
29天前
|
存储 监控 算法
美团面试:说说 G1垃圾回收 底层原理?说说你 JVM 调优的过程 ?
尼恩提示: G1垃圾回收 原理非常重要, 是面试的重点, 大家一定要好好掌握
美团面试:说说 G1垃圾回收 底层原理?说说你 JVM 调优的过程  ?
|
13天前
|
存储 监控 Java
JVM进阶调优系列(8)如何手把手,逐行教她看懂GC日志?| IT男的专属浪漫
本文介绍了如何通过JVM参数打印GC日志,并通过示例代码展示了频繁YGC和FGC的场景。文章首先讲解了常见的GC日志参数,如`-XX:+PrintGCDetails`、`-XX:+PrintGCDateStamps`等,然后通过具体的JVM参数和代码示例,模拟了不同内存分配情况下的GC行为。最后,详细解析了GC日志的内容,帮助读者理解GC的执行过程和GC处理机制。
|
1月前
|
Arthas 监控 Java
JVM知识体系学习七:了解JVM常用命令行参数、GC日志详解、调优三大方面(JVM规划和预调优、优化JVM环境、JVM运行出现的各种问题)、Arthas
这篇文章全面介绍了JVM的命令行参数、GC日志分析以及性能调优的各个方面,包括监控工具使用和实际案例分析。
40 3
|
1月前
|
算法 Java
JVM进阶调优系列(4)年轻代和老年代采用什么GC算法回收?
本文详细介绍了JVM中的GC算法,包括年轻代的复制算法和老年代的标记-整理算法。复制算法适用于年轻代,因其高效且能避免内存碎片;标记-整理算法则用于老年代,虽然效率较低,但能有效解决内存碎片问题。文章还解释了这两种算法的具体过程及其优缺点,并简要提及了其他GC算法。
 JVM进阶调优系列(4)年轻代和老年代采用什么GC算法回收?
|
1月前
|
存储 Java PHP
【JVM】垃圾回收机制(GC)之引用计数和可达性分析
【JVM】垃圾回收机制(GC)之引用计数和可达性分析
55 0
|
1月前
|
前端开发 Java 应用服务中间件
JVM进阶调优系列(1)类加载器原理一文讲透
本文详细介绍了JVM类加载机制。首先解释了类加载器的概念及其工作原理,接着阐述了四种类型的类加载器:启动类加载器、扩展类加载器、应用类加载器及用户自定义类加载器。文中重点讲解了双亲委派机制,包括其优点和缺点,并探讨了打破这一机制的方法。最后,通过Tomcat的实际应用示例,展示了如何通过自定义类加载器打破双亲委派机制,实现应用间的隔离。
|
4月前
|
运维 Java Linux
(九)JVM成神路之性能调优、GC调试、各内存区、Linux参数大全及实用小技巧
本章节主要用于补齐之前GC篇章以及JVM运行时数据区的一些JVM参数,更多的作用也可以看作是JVM的参数列表大全。对于开发者而言,能够控制JVM的部分也就只有启动参数了,同时,对于JVM的性能调优而言,JVM的参数也是基础。
102 8
|
3月前
|
算法 Java 应用服务中间件
探索JVM垃圾回收算法:选择适合你应用的最佳GC策略
探索JVM垃圾回收算法:选择适合你应用的最佳GC策略