Java8 Stream,常用方法大合集

简介: Java8 Stream,常用方法大合集

一、概述


tream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。


简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。


特点:


不是数据结构,不会保存数据。


不会修改原来的数据源,它会将操作后的数据保存到另外一个对象中。(保留意见:毕竟peek方法可以修改流中元素)


惰性求值,流在中间处理过程中,只是对操作进行了记录,并不会立即执行,需要等到执行终止操作的时候才会进行实际的计算。


二、分类


1673263101164.jpg


  • 无状态: 指元素的处理不受之前元素的影响;

  • 有状态: 指该操作只有拿到所有元素之后才能继续下去。

  • 非短路操作: 指必须处理所有元素才能得到最终结果;

  • 短路操作: 指遇到某些符合条件的元素就可以得到最终结果,如 A || B,只要A为true,则无需判断B的结果。


三、具体用法


1. 流的常用创建方法


1.1 使用Collection下的 stream() parallelStream()方法


List<String> list = new ArrayList<>();
Stream<String> stream = list.stream(); //获取一个顺序流
Stream<String> parallelStream = list.parallelStream(); //获取一个并行流


1.2 使用Arrays 中的stream()方法,将数组转成流


Integer[] nums = new Integer[10];
Stream<Integer> stream = Arrays.stream(nums);


1.3 使用Stream中的静态方法:of()、iterate()、generate()


Stream<Integer> stream = Stream.of(1,2,3,4,5,6);
Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 2).limit(6);
stream2.forEach(System.out::println); // 0 2 4 6 8 10
Stream<Double> stream3 = Stream.generate(Math::random).limit(2);
stream3.forEach(System.out::println);


1.4 使用 BufferedReader.lines() 方法,将每行内容转成流


BufferedReader reader = new BufferedReader(new FileReader("F:\\test_stream.txt"));
Stream<String> lineStream = reader.lines();
lineStream.forEach(System.out::println);


1.5 使用 Pattern.splitAsStream() 方法,将字符串分隔成流


Pattern pattern = Pattern.compile(",");
Stream<String> stringStream = pattern.splitAsStream("a,b,c,d");
stringStream.forEach(System.out::println);


2. 流的中间操作


2.1 筛选与切片


  • filter:过滤流中的某些元素
  • limit(n):获取n个元素
  • skip(n):跳过n元素,配合limit(n)可实现分页
  • distinct:通过流中元素的 hashCode() equals() 去除重复元素
Stream<Integer> stream = Stream.of(6, 4, 6, 7, 3, 9, 8, 10, 12, 14, 14);
Stream<Integer> newStream = stream.filter(s -> s > 5) //6 6 7 9 8 10 12 14 14
        .distinct() //6 7 9 8 10 12 14
        .skip(2) //9 8 10 12 14
        .limit(2); //9 8
newStream.forEach(System.out::println);


2.2 映射


  • map: 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
  • flatMap: 接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
List<String> list = Arrays.asList("a,b,c", "1,2,3");
//将每个元素转成一个新的且不带逗号的元素
Stream<String> s1 = list.stream().map(s -> s.replaceAll(",", ""));
s1.forEach(System.out::println); // abc  123
Stream<String> s3 = list.stream().flatMap(s -> {
    //将每个元素转换成一个stream
    String[] split = s.split(",");
    Stream<String> s2 = Arrays.stream(split);
    return s2;
});
s3.forEach(System.out::println); // a b c 1 2 3
List<List<Long>> list = new ArrayList<>();
List<Long> list1 = new ArrayList<>();
list1.add(1L);
list1.add(2L);
list.add(list1);
List<Long> list2 = new ArrayList<>();
list1.add(6L);
list1.add(4L);
list.add(list2);
List<Long> collect1 = list.stream().flatMap(collect -> collect.stream()).collect(Collectors.toList());
System.out.println(collect1); //[1, 2, 6, 4]


2.3 排序


  • sorted():自然排序,流中元素需实现Comparable接口
  • sorted(Comparator com):定制排序,自定义Comparator排序器
List<String> list = Arrays.asList("aa", "ff", "dd");
//String 类自身已实现Compareable接口
list.stream().sorted().forEach(System.out::println);// aa dd ff
Student s1 = new Student("aa", 10);
Student s2 = new Student("bb", 20);
Student s3 = new Student("aa", 30);
Student s4 = new Student("dd", 40);
List<Student> studentList = Arrays.asList(s1, s2, s3, s4);
//自定义排序:先按姓名升序,姓名相同则按年龄升序
studentList.stream().sorted(
        (o1, o2) -> {
            if (o1.getName().equals(o2.getName())) {
                return o1.getAge() - o2.getAge();
            } else {
                return o1.getName().compareTo(o2.getName());
            }
        }
).forEach(System.out::println);


2.4 消费


  • peek:如同于map,能得到流中的每一个元素。但map接收的是一个Function表达式,有返回值;而peek接收的是Consumer表达式,没有返回值。
Student s1 = new Student("aa", 10);
Student s2 = new Student("bb", 20);
List<Student> studentList = Arrays.asList(s1, s2);
studentList.stream()
        .peek(o -> o.setAge(100))
        .forEach(System.out::println);   
//结果:
Student{name='aa', age=100}
Student{name='bb', age=100}


3. 流的终止操作


3.1 匹配、聚合操作


  • allMatch:接收一个 Predicate 函数,当流中每个元素都符合该断言时才返回true,否则返回false
  • noneMatch:接收一个 Predicate 函数,当流中每个元素都不符合该断言时才返回true,否则返回false
  • anyMatch:接收一个 Predicate 函数,只要流中有一个元素满足该断言则返回true,否则返回false
  • findFirst:返回流中第一个元素
  • findAny:返回流中的任意元素
  • count:返回流中元素的总个数
  • max:返回流中元素最大值
  • min:返回流中元素最小值
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
boolean allMatch = list.stream().allMatch(e -> e > 10); //false
boolean noneMatch = list.stream().noneMatch(e -> e > 10); //true
boolean anyMatch = list.stream().anyMatch(e -> e > 4);  //true
Integer findFirst = list.stream().findFirst().get(); //1
Integer findAny = list.stream().findAny().get(); //1
long count = list.stream().count(); //5
Integer max = list.stream().max(Integer::compareTo).get(); //5
Integer min = list.stream().min(Integer::compareTo).get(); //1


3.2 规约操作


  • Optional<T> reduce(BinaryOperator<T> accumulator):第一次执行时,accumulator函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素;第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。

  • T reduce(T identity, BinaryOperator<T> accumulator):流程跟上面一样,只是第一次执行时,accumulator函数的第一个参数为identity,而第二个参数为流中的第一个元素。

  • \<U> U reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator\<U> combiner):在串行流(stream)中,该方法跟第二个方法一样,即第三个参数combiner不会起作用。在并行流(parallelStream)中,我们知道流被fork join出多个线程进行执行,此时每个线程的执行流程就跟第二个方法reduce(identity,accumulator)一样,而第三个参数combiner函数,则是将每个线程的执行结果当成一个新的流,然后使用第一个方法reduce(accumulator)流程进行规约。


//经过测试,当元素个数小于24时,并行时线程数等于元素个数,当大于等于24时,并行时线程数为16
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24);
Integer v = list.stream().reduce((x1, x2) -> x1 + x2).get();
System.out.println(v);   // 300
Integer v1 = list.stream().reduce(10, (x1, x2) -> x1 + x2);
System.out.println(v1);  //310
Integer v2 = list.stream().reduce(0,
        (x1, x2) -> {
            System.out.println("stream accumulator: x1:" + x1 + "  x2:" + x2);
            return x1 - x2;
        },
        (x1, x2) -> {
            System.out.println("stream combiner: x1:" + x1 + "  x2:" + x2);
            return x1 * x2;
        });
System.out.println(v2); // -300
Integer v3 = list.parallelStream().reduce(0,
        (x1, x2) -> {
            System.out.println("parallelStream accumulator: x1:" + x1 + "  x2:" + x2);
            return x1 - x2;
        },
        (x1, x2) -> {
            System.out.println("parallelStream combiner: x1:" + x1 + "  x2:" + x2);
            return x1 * x2;
        });
System.out.println(v3); //197474048


3.3 收集操作


collect:接收一个Collector实例,将流中元素收集成另外一个数据结构。


Collector<T, A, R> 是一个接口,有以下5个抽象方法:


Supplier<A> supplier():创建一个结果容器A

BiConsumer<A, T> accumulator():消费型接口,第一个参数为容器A,第二个参数为流中元素T。

BinaryOperator<A> combiner():函数接口,该参数的作用跟上一个方法(reduce)中的combiner参数一样,将并行流中各个子进程的运行结果(accumulator函数操作后的容器A)进行合并。

Function<A, R> finisher():函数式接口,参数为:容器A,返回类型为:collect方法最终想要的结果R。

Set<Characteristics> characteristics():返回一个不可变的Set集合,用来表明该Collector的特征。有以下三个特征:

CONCURRENT:表示此收集器支持并发。(官方文档还有其他描述,暂时没去探索,故不作过多翻译)

UNORDERED:表示该收集操作不会保留流中元素原有的顺序。

IDENTITY_FINISH:表示finisher参数只是标识而已,可忽略。


3.3.1 Collector 工具库:Collectors

Student s1 = new Student("aa", 10,1);
Student s2 = new Student("bb", 20,2);
Student s3 = new Student("cc", 10,3);
List<Student> list = Arrays.asList(s1, s2, s3);
//装成list
List<Integer> ageList = list.stream().map(Student::getAge).collect(Collectors.toList()); // [10, 20, 10]
//转成set
Set<Integer> ageSet = list.stream().map(Student::getAge).collect(Collectors.toSet()); // [20, 10]
//转成map,注:key不能相同,否则报错
Map<String, Integer> studentMap = list.stream().collect(Collectors.toMap(Student::getName, Student::getAge)); // {cc=10, bb=20, aa=10}
Map<Long, ArrayList<Long>> collect = clazzList.stream().collect(Collectors.toMap(Clazz::getClazzId, e -> new ArrayList<Long>()));
// 构造方法返回新对象
Map<Long, ClazzUserReps> clazzMap = clazzList.stream().collect(Collectors.toMap(Clazz::getClazzId, e -> new ClazzUserReps(e.getClazzId(), e.getClazzName(), new ArrayList<>())));
//转成map进阶,相同key不报错,取最新的key 
List<Long> idList = Arrays.asList(1L,2L,3L,4L,5L,5L);
List<Long> idExist = Arrays.asList(1L,2L,3L);
Map<Long, Boolean> collect = idList.stream().collect(Collectors.toMap(value -> value, idExist::contains, (oldValue, newValue) -> newValue));
// 结果:{1=true, 2=true, 3=true, 4=false, 5=false}
//字符串分隔符连接
String joinName = list.stream().map(Student::getName).collect(Collectors.joining(",", "(", ")")); // (aa,bb,cc)
//聚合操作
//1.学生总数
Long count = list.stream().collect(Collectors.counting()); // 3
//2.最大年龄 (最小的minBy同理)
Integer maxAge = list.stream().map(Student::getAge).collect(Collectors.maxBy(Integer::compare)).get(); // 20
//3.所有人的年龄
Integer sumAge = list.stream().collect(Collectors.summingInt(Student::getAge)); // 40
//4.平均年龄
Double averageAge = list.stream().collect(Collectors.averagingDouble(Student::getAge)); // 13.333333333333334
// 带上以上所有方法
DoubleSummaryStatistics statistics = list.stream().collect(Collectors.summarizingDouble(Student::getAge));
System.out.println("count:" + statistics.getCount() + ",max:" + statistics.getMax() + ",sum:" + statistics.getSum() + ",average:" + statistics.getAverage());
//分组
Map<Integer, List<Student>> ageMap = list.stream().collect(Collectors.groupingBy(Student::getAge));
//多重分组,先根据类型分再根据年龄分
Map<Integer, Map<Integer, List<Student>>> typeAgeMap = list.stream().collect(Collectors.groupingBy(Student::getType, Collectors.groupingBy(Student::getAge)));
//分区
//分成两部分,一部分大于10岁,一部分小于等于10岁
Map<Boolean, List<Student>> partMap = list.stream().collect(Collectors.partitioningBy(v -> v.getAge() > 10));
//规约
Integer allAge = list.stream().map(Student::getAge).collect(Collectors.reducing(Integer::sum)).get(); //40


3.3.2 Collectors.toList() 解析


//toList 源码
public static <T> Collector<T, ?, List<T>> toList() {
    return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add,
            (left, right) -> {
                left.addAll(right);
                return left;
            }, CH_ID);
}
//为了更好地理解,我们转化一下源码中的lambda表达式
public <T> Collector<T, ?, List<T>> toList() {
    Supplier<List<T>> supplier = () -> new ArrayList();
    BiConsumer<List<T>, T> accumulator = (list, t) -> list.add(t);
    BinaryOperator<List<T>> combiner = (list1, list2) -> {
        list1.addAll(list2);
        return list1;
    };
    Function<List<T>, List<T>> finisher = (list) -> list;
    Set<Collector.Characteristics> characteristics = Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH));
    return new Collector<T, List<T>, List<T>>() {
        @Override
        public Supplier supplier() {
            return supplier;
        }
        @Override
        public BiConsumer accumulator() {
            return accumulator;
        }
        @Override
        public BinaryOperator combiner() {
            return combiner;
        }
        @Override
        public Function finisher() {
            return finisher;
        }
        @Override
        public Set<Characteristics> characteristics() {
            return characteristics;
        }
    };
}


相关文章
|
25天前
|
消息中间件 Java Kafka
在Java中实现分布式事务的常用框架和方法
总之,选择合适的分布式事务框架和方法需要综合考虑业务需求、性能、复杂度等因素。不同的框架和方法都有其特点和适用场景,需要根据具体情况进行评估和选择。同时,随着技术的不断发展,分布式事务的解决方案也在不断更新和完善,以更好地满足业务的需求。你还可以进一步深入研究和了解这些框架和方法,以便在实际应用中更好地实现分布式事务管理。
|
1月前
|
Java
java小工具util系列5:java文件相关操作工具,包括读取服务器路径下文件,删除文件及子文件,删除文件夹等方法
java小工具util系列5:java文件相关操作工具,包括读取服务器路径下文件,删除文件及子文件,删除文件夹等方法
68 9
|
19天前
|
存储 Java 数据挖掘
Java 8 新特性之 Stream API:函数式编程风格的数据处理范式
Java 8 引入的 Stream API 提供了一种新的数据处理方式,支持函数式编程风格,能够高效、简洁地处理集合数据,实现过滤、映射、聚合等操作。
35 6
|
19天前
|
Java API 开发者
Java中的Lambda表达式与Stream API的协同作用
在本文中,我们将探讨Java 8引入的Lambda表达式和Stream API如何改变我们处理集合和数组的方式。Lambda表达式提供了一种简洁的方法来表达代码块,而Stream API则允许我们对数据流进行高级操作,如过滤、映射和归约。通过结合使用这两种技术,我们可以以声明式的方式编写更简洁、更易于理解和维护的代码。本文将介绍Lambda表达式和Stream API的基本概念,并通过示例展示它们在实际项目中的应用。
|
23天前
|
安全 Java 开发者
Java中WAIT和NOTIFY方法必须在同步块中调用的原因
在Java多线程编程中,`wait()`和`notify()`方法是实现线程间协作的关键。这两个方法必须在同步块或同步方法中调用,这一要求背后有着深刻的原因。本文将深入探讨为什么`wait()`和`notify()`方法必须在同步块中调用,以及这一机制如何确保线程安全和避免死锁。
37 4
|
23天前
|
Java
深入探讨Java中的中断机制:INTERRUPTED和ISINTERRUPTED方法详解
在Java多线程编程中,中断机制是协调线程行为的重要手段。了解和正确使用中断机制对于编写高效、可靠的并发程序至关重要。本文将深入探讨Java中的`Thread.interrupted()`和`Thread.isInterrupted()`方法的区别及其应用场景。
24 4
|
21天前
|
Java 数据处理 数据安全/隐私保护
Java处理数据接口方法
Java处理数据接口方法
24 1
|
10天前
|
Rust 安全 Java
Java Stream 使用指南
本文介绍了Java中Stream流的使用方法,包括如何创建Stream流、中间操作(如map、filter、sorted等)和终结操作(如collect、forEach等)。此外,还讲解了并行流的概念及其可能带来的线程安全问题,并给出了示例代码。
|
1月前
|
存储 Java 程序员
Java基础的灵魂——Object类方法详解(社招面试不踩坑)
本文介绍了Java中`Object`类的几个重要方法,包括`toString`、`equals`、`hashCode`、`finalize`、`clone`、`getClass`、`notify`和`wait`。这些方法是面试中的常考点,掌握它们有助于理解Java对象的行为和实现多线程编程。作者通过具体示例和应用场景,详细解析了每个方法的作用和重写技巧,帮助读者更好地应对面试和技术开发。
114 4
|
1月前
|
Java 测试技术 Maven
Java一分钟之-PowerMock:静态方法与私有方法测试
通过本文的详细介绍,您可以使用PowerMock轻松地测试Java代码中的静态方法和私有方法。PowerMock通过扩展Mockito,提供了强大的功能,帮助开发者在复杂的测试场景中保持高效和准确的单元测试。希望本文对您的Java单元测试有所帮助。
159 2