使用JavaScript解决算法问题:删除链表的节点

简介: 使用JavaScript解决算法问题:删除链表的节点

删除链表的节点


给定单向链表的头指针和一个要删除的节点的值,定义一个函数删除该节点。

返回删除后的链表的头节点。

示例 1:

输入: head = [4,5,1,9], val = 5

输出: [4,1,9]

解释: 给定你链表中值为 5 的第二个节点,那么在调用了你的函数之后,该链表应变为 4 -> 1 -> 9.

示例 2:

输入: head = [4,5,1,9], val = 1

输出: [4,5,9]

解释: 给定你链表中值为 1 的第三个节点,那么在调用了你的函数之后,该链表应变为 4 -> 5 -> 9.

说明:

  • 题目保证链表中节点的值互不相同

解题思路


删除链表中的指定元素,可以进行遍历每一个节点,当当前节点与指定值相同时,使上一个节点直接指向当前节点的下一个节点

此时有两种特殊情况,情况一:要删除的是头节点,此时直接返回头节点的next;情况二:要删除的是尾节点,将上一个节点直接指向null

具体步骤可以拆分如下:

  • 第一步:判断是不是头节点:如果是直接返回head.next,如果不是则往下进行
  • 第二步:初始化一个变量,等于头节点,用于存储为当前变量;如果存在下一个节点则进行循环
  • 判断下一个节点的值是否等于指定值val,如果是则将当前节点指向下下一个节点,并且返回 head
  • 如果不是则令当前节点等于下一个节点
var deleteNode = function(head, val) {
    if(head.val == val) return head.next;
    let cur = head;
    while(cur.next) {
        if(cur.next.val == val) {
            cur.next = cur.next.next;
            return head;
        }
        cur = cur.next;
    }
};


image.png


目录
相关文章
|
2月前
|
存储 监控 JavaScript
基于布隆过滤器的 Node.js 算法在局域网电脑桌面监控设备快速校验中的应用研究
本文探讨了布隆过滤器在局域网电脑桌面监控中的应用,分析其高效空间利用率、快速查询性能及动态扩容优势,并设计了基于MAC地址的校验模型,提供Node.js实现代码,适用于设备准入控制与重复数据过滤场景。
93 0
|
2天前
|
存储 监控 算法
局域网监控其他电脑的设备信息管理 Node.js 跳表算法
跳表通过分层索引实现O(logn)的高效查询、插入与删除,适配局域网监控中设备动态接入、IP映射及范围筛选等需求,相比传统结构更高效稳定,适用于Node.js环境下的实时设备管理。
27 1
|
10天前
|
存储 监控 JavaScript
企业上网监控系统的恶意 URL 过滤 Node.js 布隆过滤器算法
布隆过滤器以低内存、高效率特性,解决企业上网监控系统对百万级恶意URL实时检测与动态更新的难题,通过概率性判断实现毫秒级过滤,内存占用降低96%,适配大规模场景需求。
143 3
|
9天前
|
存储 监控 算法
电脑管控软件的进程优先级调度:Node.js 红黑树算法
红黑树凭借O(log n)高效插入、删除与查询特性,适配电脑管控软件对进程优先级动态调度的高并发需求。其自平衡机制保障系统稳定,低内存占用满足轻量化部署,显著优于传统数组或链表方案,是实现关键进程资源优先分配的理想选择。
47 1
|
26天前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
157 3
|
1月前
|
机器学习/深度学习 运维 算法
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
121 0
|
1月前
|
机器学习/深度学习 并行计算 算法
基于改进的粒子群算法PSO求解电容器布局优化问题HV配电中的功率损耗和成本 IEEE34节点(Matlab代码实现)
基于改进的粒子群算法PSO求解电容器布局优化问题HV配电中的功率损耗和成本 IEEE34节点(Matlab代码实现)
|
1月前
|
并行计算 算法 安全
【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)
【ADMM、碳排放】基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究【IEEE6节点、IEEE30节点、IEEE118节点】(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于自适应遗传算法风光场景生成的电动汽车并网优化调度【IEEE33节点】(Matlab代码实现)
基于自适应遗传算法风光场景生成的电动汽车并网优化调度【IEEE33节点】(Matlab代码实现)
|
4月前
|
机器学习/深度学习 算法
24. 两两交换链表中的节点, 19.删除链表的倒数第N个节点 ,面试题 02.07. 链表相交
1. **两两交换链表中的节点**:通过引入虚拟头结点,使所有节点都能采用统一的交换逻辑,避免对头结点单独处理。 2. **删除链表的倒数第N个节点**:利用双指针技巧,让快慢指针保持N个节点的距离,当快指针到达末尾时,慢指针正好指向待删除节点的前一个节点。 3. **链表相交**:先计算两链表长度并调整起点,确保从相同距离末尾的位置开始遍历,从而高效找到相交节点或确定无交点。 以上方法均在时间复杂度和空间复杂度上进行了优化,适合用于理解和掌握链表的基本操作及常见算法设计思路。

热门文章

最新文章