算法分析怎么回事

简介: 《基础》

数学模型

1. 近似

N3/6-N2/2+N/3 ~ N3/6。使用 ~f(N) 来表示所有随着 N 的增大除以 f(N) 的结果趋近于 1 的函数。

2. 增长数量级

N3/6-N2/2+N/3 的增长数量级为 O(N3)。增长数量级将算法与它的具体实现隔离开来,一个算法的增长数量级为 O(N3) 与它是否用 Java 实现,是否运行于特定计算机上无关。

3. 内循环

执行最频繁的指令决定了程序执行的总时间,把这些指令称为程序的内循环。

4. 成本模型

使用成本模型来评估算法,例如数组的访问次数就是一种成本模型。

注意事项

1. 大常数

在求近似时,如果低级项的常数系数很大,那么近似的结果是错误的。

2. 缓存

计算机系统会使用缓存技术来组织内存,访问数组相邻的元素会比访问不相邻的元素快很多。

3. 对最坏情况下的性能的保证

在核反应堆、心脏起搏器或者刹车控制器中的软件,最坏情况下的性能是十分重要的。

4. 随机化算法

通过打乱输入,去除算法对输入的依赖。

5. 均摊分析

将所有操作的总成本除于操作总数来将成本均摊。例如对一个空栈进行 N 次连续的 push() 调用需要访问数组的次数为 N+4+8+16+...+2N=5N-4(N 是向数组写入元素的次数,其余都是调整数组大小时进行复制需要的访问数组次数),均摊后访问数组的平均次数为常数。

ThreeSum

ThreeSum 用于统计一个数组中和为 0 的三元组数量。

public interface ThreeSum {
    int count(int[] nums);
}

1. ThreeSumSlow

该算法的内循环为 if (nums[i] + nums[j] + nums[k] == 0) 语句,总共执行的次数为 N(N-1)(N-2) = N3/6-N2/2+N/3,因此它的近似执行次数为 ~N3/6,增长数量级为 O(N3)。

public class ThreeSumSlow implements ThreeSum {
    @Override
    public int count(int[] nums) {
        int N = nums.length;
        int cnt = 0;
        for (int i = 0; i < N; i++) {
            for (int j = i + 1; j < N; j++) {
                for (int k = j + 1; k < N; k++) {
                    if (nums[i] + nums[j] + nums[k] == 0) {
                        cnt++;
                    }
                }
            }
        }
        return cnt;
    }
}

2. ThreeSumBinarySearch

将数组进行排序,对两个元素求和,并用二分查找方法查找是否存在该和的相反数,如果存在,就说明存在和为 0 的三元组。

应该注意的是,只有数组不含有相同元素才能使用这种解法,否则二分查找的结果会出错。

该方法可以将 ThreeSum 算法增长数量级降低为 O(N2logN)。

public class ThreeSumBinarySearch implements ThreeSum {
    @Override
    public int count(int[] nums) {
        Arrays.sort(nums);
        int N = nums.length;
        int cnt = 0;
        for (int i = 0; i < N; i++) {
            for (int j = i + 1; j < N; j++) {
                int target = -nums[i] - nums[j];
                int index = BinarySearch.search(nums, target);
                // 应该注意这里的下标必须大于 j,否则会重复统计。
                if (index > j) {
                    cnt++;
                }
            }
        }
        return cnt;
    }
}
public class BinarySearch {
    public static int search(int[] nums, int target) {
        int l = 0, h = nums.length - 1;
        while (l <= h) {
            int m = l + (h - l) / 2;
            if (target == nums[m]) {
                return m;
            } else if (target > nums[m]) {
                l = m + 1;
            } else {
                h = m - 1;
            }
        }
        return -1;
    }
}

3. ThreeSumTwoPointer

更有效的方法是先将数组排序,然后使用双指针进行查找,时间复杂度为 O(N2)。

同样不适用与数组存在重复元素的情况。

public class ThreeSumTwoPointer implements ThreeSum {
    @Override
    public int count(int[] nums) {
        int N = nums.length;
        int cnt = 0;
        Arrays.sort(nums);
        for (int i = 0; i < N - 2; i++) {
            int l = i + 1, h = N - 1, target = -nums[i];
            while (l < h) {
                int sum = nums[l] + nums[h];
                if (sum == target) {
                    cnt++;
                    l++;
                    h--;
                } else if (sum < target) {
                    l++;
                } else {
                    h--;
                }
            }
        }
        return cnt;
    }
}

倍率实验

如果 T(N) ~ aNblogN,那么 T(2N)/T(N) ~ 2b

例如对于暴力的 ThreeSum 算法,近似时间为 ~N3/6。进行如下实验:多次运行该算法,每次取的 N 值为前一次的两倍,统计每次执行的时间,并统计本次运行时间与前一次运行时间的比值,得到如下结果:

N Time(ms) Ratio
500 48 /
1000 320 6.7
2000 555 1.7
4000 4105 7.4
8000 33575 8.2
16000 268909 8.0

可以看到,T(2N)/T(N) ~ 23,因此可以确定 T(N) ~ aN3logN。

public class RatioTest {
    public static void main(String[] args) {
        int N = 500;
        int loopTimes = 7;
        double preTime = -1;
        while (loopTimes-- > 0) {
            int[] nums = new int[N];
            StopWatch.start();
            ThreeSum threeSum = new ThreeSumSlow();
            int cnt = threeSum.count(nums);
            System.out.println(cnt);
            double elapsedTime = StopWatch.elapsedTime();
            double ratio = preTime == -1 ? 0 : elapsedTime / preTime;
            System.out.println(N + "  " + elapsedTime + "  " + ratio);
            preTime = elapsedTime;
            N *= 2;
        }
    }
}
public class StopWatch {
    private static long start;
    public static void start() {
        start = System.currentTimeMillis();
    }
    public static double elapsedTime() {
        long now = System.currentTimeMillis();
        return (now - start) / 1000.0;
    }
}
相关文章
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
57 4
|
3月前
|
数据采集 机器学习/深度学习 算法
|
3月前
|
人工智能 算法 BI
第一周算法设计与分析 D : 两面包夹芝士
这篇文章介绍了解决算法问题"两面包夹芝士"的方法,通过找出两个数组中的最大最小值,计算这两个值之间的整数个数,包括特判不存在整数的情况。
|
19天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
26天前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
2月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
53 4
|
1月前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
2月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
40 1
|
2月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
114 19
|
3月前
|
算法
算法设计与分析作业
这篇文章是关于算法设计与分析的作业,其中包含了两个算法实现:一个是使用分治算法实现的十进制大整数相乘(包括加法、减法和乘法函数),并进行了正确性和健壮性测试;另一个是使用快速排序思想实现的分治查找第K小元素的程序,并分析了其平均和最坏时间复杂度。
算法设计与分析作业