go并发与锁

简介: go并发与锁

很多语言的并发编程很容易在同时修改某个变量的时候,因为操作不是原子的,而出现错误计算,比如一个加法运算使用中的变量被修改,而导致计算结果出错,典型的像统计商品库存。


个人建议只要涉及到共享变量统统使用channel,因为channel源码中使用了互斥锁,它是并发安全的。


我们可以不用,但不可以不了解,手中有粮心中不慌。


并发不安全的例子


数组是并发不安全的,在例子开始前我们要知道append函数的行为:长度足够在原数组cap内追加函数,增加len,长度不够则触发扩容,申请新数组cap增加一倍,赋值迁移。



所以在这个过程中,仅讨论扩容操作的话可能存在同时申请并赋值的情况,导致漏掉某次扩容增加的数据。

var s []int
func appendValue(i int) {
  s = append(s, i)
}
func main() {
  for i := 0; i < 10000; i++ { //10000个协程同时添加切片
    go appendValue(i)
  }
    time.Sleep(2)
    fmt.Println(len(s))
}


比如上例,10000 个协程同时为切片增加数据,你可以尝试运行一下,打印出来的一定不是 10000 。


以上并发操作的同一个资源,专业名词叫做临界区。

因为并发操作存在数据竞争,导致数据值意外改写,最后的结果与期待的不符,这种问题统称为竞态问题。

常见于控制商品减库存,控制余额增减等情况。 那么有什么办法解决竞态问题呢?


互斥锁:让访问某个临界区的时候,只有一个 goroutine 可以访问。

原子操作:让某些操作变成原子的,这个后续讨论。

这两个思路贯穿了无数的高并发/分布式方案,区别是在一个进程应用中使用,还是借助某些第三方手段来实现,比如中间件。独孤九剑森罗万象一定要牢牢记住。


互斥锁


Go 语言中互斥锁的用法如下:

var lock sync.Mutex //互斥锁
lock.Lock() //加锁
s = append(s, i)
lock.Unlock() //解锁

在访问临界区的前后加上互斥锁,就可以保证不会出现并发问题。

我们修改还是上一个4.7.1的例子,为其增加互斥锁。


var s []int
var lock sync.Mutex
appendValueSafe := func(i int) {
    lock.Lock()
    s = append(s, i)
    lock.Unlock()
}
for i := 0; i < 10000; i++ { //10000个协程同时添加切片
    go appendValueSafe(i)
}
time.Sleep(2)
fmt.Println(len(s))

对共享变量s的写入操作加互斥锁,保证同一时刻只有一个goroutine修改内容。

加锁之后到解锁之前的内容,同一时刻只有一个访问,无论读写。

无论多少次都输出10000,不会再出现竞态问题。

要注意:如果在写的同时,有并发读操作时,为了防止不要读取到写了一半数据,需要为读操作也加锁。


读写锁


互斥锁是完全互斥的,并发读没有修改的情况下是不会有问题的,也没有必要在并发读的时候加锁不然效率会变低。


用法:

rwlock sync.RWMutex
//读锁
rwlock.RLock()
rwlock.RUnlock()
//写锁
rwlock.Lock()
rwlock.Unlock()


并发读不互斥可以同时,在一个写锁获取时,其他所有锁都等待, 口诀:读读不互斥、读写互斥、写写互斥。具体测算速度的代码可以见4.7.3的源码,感兴趣的可以改下注释位置看下效率是有很明显的提升的。


小结


  • 学习了几个名词:临界区、竞态问题、互斥锁、原子操作、读写锁。
  • 互斥锁:sync.Mutex, 读写锁:sync.RWMutex 都是 sync 包的。
  • 读写锁比互斥锁效率高。


问题:只加写锁可以吗?为什么?

相关文章
|
19小时前
|
缓存 Go 调度
浅谈在go语言中的锁
【5月更文挑战第11天】本文评估了Go标准库`sync`中的`Mutex`和`RWMutex`性能。`Mutex`包含状态`state`和信号量`sema`,不应复制已使用的实例。`Mutex`适用于保护数据,而`RWMutex`在高并发读取场景下更优。测试显示,小并发时`Mutex`性能较好,但随着并发增加,其性能下降;`RWMutex`的读性能稳定,写性能在高并发时低于`Mutex`。
106 0
浅谈在go语言中的锁
|
6天前
|
Cloud Native Go 云计算
多范式编程语言Go:并发与静态类型的结合
Go语言是Google于2007年开发的开源编程语言,旨在提高程序开发和部署的效率。它的独特特征在于结合了并发处理与静态类型系统,提供了简洁、高效、并行处理能力的编程体验。本文将探讨Go语言的特点、应用场景以及其在现代软件开发中的优势。
|
6天前
|
安全 Go
Golang深入浅出之-Go语言中的并发安全队列:实现与应用
【5月更文挑战第3天】本文探讨了Go语言中的并发安全队列,它是构建高性能并发系统的基础。文章介绍了两种实现方法:1) 使用`sync.Mutex`保护的简单队列,通过加锁解锁确保数据一致性;2) 使用通道(Channel)实现无锁队列,天生并发安全。同时,文中列举了并发编程中常见的死锁、数据竞争和通道阻塞问题,并给出了避免这些问题的策略,如明确锁边界、使用带缓冲通道、优雅处理关闭以及利用Go标准库。
27 5
|
6天前
|
存储 缓存 安全
Golang深入浅出之-Go语言中的并发安全容器:sync.Map与sync.Pool
Go语言中的`sync.Map`和`sync.Pool`是并发安全的容器。`sync.Map`提供并发安全的键值对存储,适合快速读取和少写入的情况。注意不要直接遍历Map,应使用`Range`方法。`sync.Pool`是对象池,用于缓存可重用对象,减少内存分配。使用时需注意对象生命周期管理和容量控制。在多goroutine环境下,这两个容器能提高性能和稳定性,但需根据场景谨慎使用,避免不当操作导致的问题。
35 4
|
6天前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第2天】Go语言的并发编程基于CSP模型,强调通过通信共享内存。核心概念是goroutines(轻量级线程)和channels(用于goroutines间安全数据传输)。常见问题包括数据竞争、死锁和goroutine管理。避免策略包括使用同步原语、复用channel和控制并发。示例展示了如何使用channel和`sync.WaitGroup`避免死锁。理解并发原则和正确应用CSP模型是编写高效安全并发程序的关键。
37 4
|
6天前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第1天】Go语言基于CSP理论,借助goroutines和channels实现独特的并发模型。Goroutine是轻量级线程,通过`go`关键字启动,而channels提供安全的通信机制。文章讨论了数据竞争、死锁和goroutine泄漏等问题及其避免方法,并提供了一个生产者消费者模型的代码示例。理解CSP和妥善处理并发问题对于编写高效、可靠的Go程序至关重要。
27 2
|
6天前
|
设计模式 Go 调度
Golang深入浅出之-Go语言中的并发模式:Pipeline、Worker Pool等
【5月更文挑战第1天】Go语言并发模拟能力强大,Pipeline和Worker Pool是常用设计模式。Pipeline通过多阶段处理实现高效并行,常见问题包括数据竞争和死锁,可借助通道和`select`避免。Worker Pool控制并发数,防止资源消耗,需注意任务分配不均和goroutine泄露,使用缓冲通道和`sync.WaitGroup`解决。理解和实践这些模式是提升Go并发性能的关键。
31 2
|
6天前
|
监控 安全 Go
【Go语言专栏】Go语言中的并发性能分析与优化
【4月更文挑战第30天】Go语言以其卓越的并发性能和简洁语法著称,通过goroutines和channels实现并发。并发性能分析旨在解决竞态条件、死锁和资源争用等问题,以提升多核环境下的程序效率。使用pprof等工具可检测性能瓶颈,优化策略包括减少锁范围、使用无锁数据结构、控制goroutines数量、应用worker pool和优化channel使用。理解并发模型和合理利用并发原语是编写高效并发代码的关键。
|
6天前
|
SQL Go 数据库
【Go语言专栏】Go语言中的事务处理与并发控制
【4月更文挑战第30天】Go语言在数据库编程中支持事务处理和并发控制,确保ACID属性和多用户环境下的数据完整性。`database/sql`包提供事务管理,如示例所示,通过`Begin()`、`Commit()`和`Rollback()`执行和控制事务。并发控制利用Mutex、WaitGroup和Channel防止数据冲突。结合事务与并发控制,开发者可处理复杂场景,实现高效、可靠的数据库应用。
|
6天前
|
Go
【Go语言专栏】Go语言的并发编程进阶:互斥锁与条件变量
【4月更文挑战第30天】本文探讨了Go语言中的互斥锁(Mutex)和条件变量(Condition Variable)在并发编程中的应用。互斥锁用于保护共享资源,防止多goroutine同时访问,通过Lock和Unlock进行控制,需注意避免死锁。条件变量则允许goroutine在条件满足时被唤醒,常与互斥锁结合使用以提高效率。了解和掌握这些同步原语能提升Go并发程序的性能和稳定性。进一步学习可参考Go官方文档和并发模式示例。