人工智能、机器学习、深度学习、神经网络,都有什么区别

简介: 人工智能、机器学习、深度学习、神经网络,都有什么区别

人工智能、机器学习、深度学习、神经网络,都有什么区别



人工智能(AI) 、机器学习(ML)、深度学习(DL)、神经网络(CNN)


人工智能、机器学习、神经网络和深度学习有何关联?


或许思考人工智能、机器学习、神经网络和深度学习的最简单方法就是将它们想象成俄罗斯套娃。 每个本质上都是前项的组成部分。


image.png


也就是说,机器学习是人工智能的一个子领域。 深度学习是机器学习的一个子领域,神经网络构成了深度学习算法的支柱。 事实上,区分单个神经网络与深度学习算法的,是神经网络的节点层数或深度,深度学习算法必须超过三层


什么是神经网络?


神经网络——更具体地说,人工神经网络 (ANN)——通过一组算法模拟人脑。 在基本层面上,神经网络由四个主要部分组成:输入、权重、偏差或阈值以及输出。 与线性回归类似,代数公式如下所示:


image.png

如果任何单个节点的输出高于指定的阈值,则激活该节点,将数据发送到网络的下一层。否则,不会将任何数据传递到网络的下一层。现在想象一下上述过程对单个决策重复多次,因为神经网络往往具有多个“隐藏”层作为深度学习算法的一部分。每个隐藏层都有自己的激活函数,可能会将信息从前一层传递到下一层。一旦生成了隐藏层的所有输出,它们就会被用作输入来计算神经网络的最终输出。大多数现实世界的应用示例都是非线性的,而且要复杂得多。


机器学习:KNN,决策树和SVM进行分类


image.png

回归和神经网络之间的主要区别在于变化对单个权重的影响。在回归中,开发者可以更改权重而不影响函数中的其他输入


然而,神经网络并非如此。由于一层的输出传递到网络的下一层,因此单个更改可能会对网络中的其他神经元产生级联效应。


深度学习与神经网络有何不同?


深度学习中的“深度”是指神经网络中层的深度。由三层以上(包括输入和输出)组成的神经网络可以被视为深度学习算法。 这通常使用下图表示:


image.png

大多数深度神经网络都是前馈的,这意味着它们仅从输入到输出在一个方向上流动。但是,开发者们也可以通过反向传播来训练模型;也就是说,从输出到输入以相反的方向移动。 反向传播允许我们计算和归因与每个神经元相关的误差,允许我们适当地调整和拟合算法。

相关文章
|
10月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
550 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
4月前
|
机器学习/深度学习 人工智能 运维
阿里云PAI人工智能平台介绍、优势及收费标准,手动整理
阿里云人工智能平台PAI是面向开发者和企业的机器学习与深度学习工程平台,提供数据标注、模型构建、训练、部署及推理优化等全链路服务。内置140+优化算法,支持PyTorch、TensorFlow等多种框架,具备高性能训练与推理能力,适用于自动驾驶、金融风控、智能推荐、智慧医疗等多个行业场景。PAI提供零代码开发、可视化建模、大模型一键部署等功能,助力企业快速构建AI应用。支持多种购买方式,如按量付费、预付费等,满足不同业务需求。
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
497 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
947 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
11月前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
290 27
|
10月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
413 22
|
7月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1031 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
11月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
972 6
|
9月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
361 40
|
7月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
187 0

热门文章

最新文章