19. 为什么Java线程没有Running状态?上

简介: 19. 为什么Java线程没有Running状态?上

19. 为什么Java线程没有Running状态?上


ava虚拟机层面所暴露给我们的状态,与操作系统底层的线程状态是两个不同层面的事。具体而言,这里说的 Java 线程状态均来自于 Thread 类下的 State 这一内部枚举类中所定义的状态:

什么是 RUNNABLE?

直接看它的 Javadoc 中的说明:

一个在 JVM 中执行的线程处于这一状态中。(A thread executing in the Java virtual machine is in this state.)

而传统的进(线)程状态一般划分如下:

注:这里的进程指早期的单线程进程,这里所谓进程状态实质就是线程状态。

那么 runnable 与图中的 ready 与 running 区别在哪呢?

与传统的ready状态的区别

更具体点,javadoc 中是这样说的:

处于 runnable 状态下的线程正在 Java 虚拟机中执行,但它可能正在等待来自于操作系统的其它资源,比如处理器。

A thread in the runnable state is executing in the Java virtual machine but it may be waiting for other resources from the operating system such as processor.

显然,runnable 状态实质上是包括了 ready 状态的。

甚至还可能有包括上图中的 waiting 状态的部分细分状态,在后面我们将会看到这一点。

与传统的running状态的区别

有人常觉得 Java 线程状态中还少了个 running 状态,这其实是把两个不同层面的状态混淆了。对 Java 线程状态而言,不存在所谓的running 状态,它的 runnable 状态包含了 running 状态。

我们可能会问,为何 JVM 中没有去区分这两种状态呢?

现在的时分(time-sharing)多任务(multi-task)操作系统架构通常都是用所谓的“时间分片(time quantum or time slice)”方式进行抢占式(preemptive)轮转调度(round-robin式)。

更复杂的可能还会加入优先级(priority)的机制。

这个时间分片通常是很小的,一个线程一次最多只能在 cpu 上运行比如10-20ms 的时间(此时处于 running 状态),也即大概只有0.01秒这一量级,时间片用后就要被切换下来放入调度队列的末尾等待再次调度。(也即回到 ready 状态)

注:如果期间进行了 I/O 的操作还会导致提前释放时间分片,并进入等待队列。

又或者是时间分片没有用完就被抢占,这时也是回到 ready 状态。

这一切换的过程称为线程的上下文切换(context switch),当然 cpu 不是简单地把线程踢开就完了,还需要把被相应的执行状态保存到内存中以便后续的恢复执行。

显然,10-20ms 对人而言是很快的,

不计切换开销(每次在1ms 以内),相当于1秒内有50-100次切换。事实上时间片经常没用完,线程就因为各种原因被中断,实际发生的切换次数还会更多。

也这正是单核 CPU 上实现所谓的“并发(concurrent)”的基本原理,但其实是快速切换所带来的假象,这有点类似一个手脚非常快的杂耍演员可以让好多个球同时在空中运转那般。

时间分片也是可配置的,如果不追求在多个线程间很快的响应,也可以把这个时间配置得大一点,以减少切换带来的开销。

如果是多核CPU,才有可能实现真正意义上的并发,这种情况通常也叫并行(pararell),不过你可能也会看到这两词会被混着用,这里就不去纠结它们的区别了。

通常,Java的线程状态是服务于监控的,如果线程切换得是如此之快,那么区分 ready 与 running 就没什么太大意义了。

当你看到监控上显示是 running 时,对应的线程可能早就被切换下去了,甚至又再次地切换了上来,也许你只能看到 ready 与 running 两个状态在快速地闪烁。

当然,对于精确的性能评估而言,获得准确的 running 时间是有必要的。

现今主流的 JVM 实现都把 Java 线程一一映射到操作系统底层的线程上,把调度委托给了操作系统,我们在虚拟机层面看到的状态实质是对底层状态的映射及包装。JVM 本身没有做什么实质的调度,把底层的 ready 及 running 状态映射上来也没多大意义,因此,统一成为runnable 状态是不错的选择。

我们将看到,Java 线程状态的改变通常只与自身显式引入的机制有关。

当I/O阻塞时

我们知道传统的I/O都是阻塞式(blocked)的,原因是I/O操作比起cpu来实在是太慢了,可能差到好几个数量级都说不定。如果让 cpu 去等I/O 的操作,很可能时间片都用完了,I/O 操作还没完成呢,不管怎样,它会导致 cpu 的利用率极低。

所以,解决办法就是:一旦线程中执行到 I/O 有关的代码,相应线程立马被切走,然后调度 ready 队列中另一个线程来运行。

这时执行了 I/O 的线程就不再运行,即所谓的被阻塞了。它也不会被放到调度队列中去,因为很可能再次调度到它时,I/O 可能仍没有完成。

线程会被放到所谓的等待队列中,处于上图中的 waiting 状态:

当然了,我们所谓阻塞只是指这段时间 cpu 暂时不会理它了,但另一个部件比如硬盘则在努力地为它服务。cpu 与硬盘间是并发的。如果把线程视作为一个 job,这一 job 由 cpu 与硬盘交替协作完成,当在 cpu 上是 waiting 时,在硬盘上却处于 running,只是我们在操作系统层面讨论线程状态时通常是围绕着 cpu 这一中心去述说的。

而当 I/O 完成时,则用一种叫中断(interrupt)的机制来通知 cpu:

也即所谓的“中断驱动(interrupt-driven)”,现代操作系统基本都采用这一机制。

某种意义上,这也是控制反转(IoC)机制的一种体现,cpu不用反复去询问硬盘,这也是所谓的“好莱坞原则”—Don’t call us, we will call you.好莱坞的经纪人经常对演员们说:“别打电话给我,(有戏时)我们会打电话给你。”

在这里,硬盘与 cpu 的互动机制也是类似,硬盘对 cpu 说:”别老来问我 IO 做完了没有,完了我自然会通知你的“

当然了,cpu 还是要不断地检查中断,就好比演员们也要时刻注意接听电话,不过这总好过不断主动去询问,毕竟绝大多数的询问都将是徒劳的。

cpu 会收到一个比如说来自硬盘的中断信号,并进入中断处理例程,手头正在执行的线程因此被打断,回到 ready 队列。而先前因 I/O 而waiting 的线程随着 I/O 的完成也再次回到 ready 队列,这时 cpu 可能会选择它来执行。

另一方面,所谓的时间分片轮转本质上也是由一个定时器定时中断来驱动的,可以使线程从 running 回到 ready 状态:

比如设置一个10ms 的倒计时,时间一到就发一个中断,好像大限已到一样,然后重置倒计时,如此循环。

与 cpu 正打得火热的线程可能不情愿听到这一中断信号,因为它意味着这一次与 cpu 缠绵的时间又要到头了…奴为出来难,何日君再来?

现在我们再看一下 Java 中定义的线程状态,嘿,它也有 BLOCKED(阻塞),也有 WAITING(等待),甚至它还更细,还有TIMED_WAITING:

现在问题来了,进行阻塞式 I/O 操作时,Java 的线程状态究竟是什么?是 BLOCKED?还是 WAITING?

可能你已经猜到,既然放到 RUNNABLE 这一主题下讨论,其实状态还是 RUNNABLE。我们也可以通过一些测试来验证这一点:

@Test
public void testInBlockedIOState() throws InterruptedException {
    Scanner in = new Scanner(System.in);
    // 创建一个名为“输入输出”的线程t
    Thread t = new Thread(new Runnable() {
        @Override
        public void run() {
            try {
                // 命令行中的阻塞读
                String input = in.nextLine();
                System.out.println(input);
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
              IOUtils.closeQuietly(in);
            }
        }
    }, "输入输出"); // 线程的名字
    // 启动
    t.start();
    // 确保run已经得到执行
    Thread.sleep(100);
    // 状态为RUNNABLE
    assertThat(t.getState()).isEqualTo(Thread.State.RUNNABLE);
}

在最后的语句上加一断点,监控上也反映了这一点:

网络阻塞时同理,比如socket.accept,我们说这是一个“阻塞式(blocked)”式方法,但线程状态还是 RUNNABLE。

@Test
public void testBlockedSocketState() throws Exception {
    Thread serverThread = new Thread(new Runnable() {
        @Override
        public void run() {
            ServerSocket serverSocket = null;
            try {
                serverSocket = new ServerSocket(10086);
                while (true) {
                    // 阻塞的accept方法
                    Socket socket = serverSocket.accept();
                    // TODO
                }
            } catch (IOException e) {
                e.printStackTrace();
            } finally {
                try {
                    serverSocket.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    }, "socket线程"); // 线程的名字
    serverThread.start();
    // 确保run已经得到执行
    Thread.sleep(500);
    // 状态为RUNNABLE
    assertThat(serverThread.getState()).isEqualTo(Thread.State.RUNNABLE);
}

监控显示:

当然,Java 很早就引入了所谓 nio(新的IO)包,至于用 nio 时线程状态究竟是怎样的,这里就不再一一具体去分析了。

至少我们看到了,进行传统上的 IO 操作时,口语上我们也会说“阻塞”,但这个“阻塞”与线程的 BLOCKED 状态是两码事!

目录
相关文章
|
11天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
13天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
13天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
13天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
36 3
|
13天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
93 2
|
21天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
46 6
|
30天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
30天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
50 3
|
1月前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
1月前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
37 2