Python数据结构与算法(1)---枚举类型enum

简介: Python数据结构与算法(1)---枚举类型enum

前言


之所以博主思考再三,开设一个数据结构的基础冷门课程。是因为目前大多数数据结构的书籍都使用的是C/C++,无疑增加了学习的门槛。


而python语言相对来说,更容易入门掌握,通过python学习数据结构与算法,对于初学者似乎更加的友好。


本篇,首先介绍的是枚举类型。在python库中,提供了枚举模块enum。通过该模块,我们可以定义程序员容易理解的字面量整数与字符串。


创建枚举


话不多说,我们先来创建一个简单的枚举类:星期。也就是让程序员容易理解的星期几的枚举类。具体定义方式如下:

import enum
class Week(enum.Enum):
    Monday = 1
    Tuesday = 2
    Wednesday = 3
    Thursday = 4
    Friday = 5
    Saturday = 6
    Sunday = 7
print("name", Week.Monday.name)
print("value", Week.Monday.value)


运行之后,控制台输出如下:


从上面的代码,我们知道,定义一个枚举类,必须派生Enum。而且还要定义描述值的类属性name与具体的值value。


迭代枚举


这里,因为是我们主动定义的枚举类,所以我们能知道具体的name和value。但是多数情况下,我们引用别人定义的枚举类,并不清楚具体的name与value。这个时候,就需要遍历来获取其枚举的各个成员。


下面,我们来遍历上面的星期枚举,具体代码如下所示:

import enum
class Week(enum.Enum):
    Monday = 1
    Tuesday = 2
    Wednesday = 3
    Thursday = 4
    Friday = 5
    Saturday = 6
    Sunday = 7
for i in Week:
    print("name=", i.name, end="   ")
    print("value=", i.value)


运行之后,name和value都会显示出来。


比较枚举


因为枚举具体的值可以是任意类型。所以枚举类型并不能比较大小,只能比较是否相等。我们来看一个简单的例子:

import enum
class Week(enum.Enum):
    Monday = 1
    Tuesday = 2
    Wednesday = 3
    Thursday = 4
    Friday = 5
    Saturday = 6
    Sunday = 7
one_Week = Week.Monday
print(one_Week == Week.Monday)
print(one_Week == Week.Tuesday)
print(one_Week > Week.Tuesday)


运行之后,效果如下:


可以看到,比较枚举大小时,会产生TypeError异常。


enum.IntEnum

当然,如果你想比较枚举的大小。还可以变更继承的枚举类型。比如上面的星期枚举都是整型,那么直接派生自枚举整型。这样,就可以相互比较了,具体代码如下:

import enum
class Week(enum.IntEnum):
    Monday = 1
    Tuesday = 2
    Wednesday = 3
    Thursday = 4
    Friday = 5
    Saturday = 6
    Sunday = 7
one_Week = Week.Monday
print(one_Week == Week.Monday)
print(one_Week == Week.Tuesday)
print(one_Week > Week.Tuesday)


运行之后,效果如下:


唯一枚举值


经过上面的学习,有木有读者尝试在同一个枚举中定义两个不同name等于相同的值呢?这种情况下,枚举是怎么处理的?


我们先来看一段代码:

import enum
class Week(enum.IntEnum):
    Monday = 1
    Tuesday = 2
    Wednesday = 3
    Thursday = 4
    Friday = 5
    Saturday = 6
    Sunday = 7
    Mon= 1
    Tue= 2
for i in Week:
    print("name=", i.name, end="   ")
    print("value=", i.value)


这里,博主在星期枚举中,添加了2个星期缩写,而且也等于1,2。运行之后,你会发现这2个值没有输出。这是因为,相同值的枚举成员会默认被认为是前一个成员的别名。这样做的好处是防止迭代时出现重复的值。


如果你想定义的枚举类型中,没有相同值的成员。可以为定义的枚举类添加修饰符@unique。这个时候,如果有值相同的成员,就会报错。

import enum
@enum.unique
class Week(enum.IntEnum):
    Monday = 1
    Tuesday = 2
    Wednesday = 3
    Thursday = 4
    Friday = 5
    Saturday = 6
    Sunday = 7
    Mon= 1
    Tue= 2


代码中创建枚举


在实际的应用中,我们往往不是直接定义枚举类。而是在程序需要时,动态的生成枚举类型。这个时候,我们有两种方式进行定义:


自动生成枚举类型的值:

import enum
Week=enum.Enum(
    value="Week",
    names=('Monday Tuesday Wednesday Thursday Friday Saturday Sunday '),
)
for i in Week:
    print("name=", i.name, end="   ")
    print("value=", i.value)


这里,会自动从1给name中每一个成员变量进行赋值,names中的成员变量用空格分开。运行效果与上面一样,这里不在展示。


手动生成枚举类型的值:

import enum
Week = enum.Enum(
    value="Week",
    names=[
        ('Monday', 1),
        ('Tuesday', 2),
        ('Wednesday', 3),
        ('Thursday', 4),
        ('Friday', 5),
        ('Saturday', 6),
        ('Sunday', 7),
    ],
)
for i in Week:
    print("name=", i.name, end="   ")
    print("value=", i.value)

这种方式创建,可以给每个成员手动指定值。要说哪个更方便,还是要结合实际的情况进行判断。

相关文章
|
2月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
59 1
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
69 4
|
4月前
|
算法 Python
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
161 18
|
4月前
|
存储 机器学习/深度学习 算法
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
126 2
|
5月前
|
算法 数据可视化 Python
Python中利用遗传算法探索迷宫出路
本文探讨了如何利用Python和遗传算法解决迷宫问题。迷宫建模通过二维数组实现,0表示通路,1为墙壁,'S'和'E'分别代表起点与终点。遗传算法的核心包括个体编码(路径方向序列)、适应度函数(评估路径有效性)、选择、交叉和变异操作。通过迭代优化,算法逐步生成更优路径,最终找到从起点到终点的最佳解决方案。文末还展示了结果可视化方法及遗传算法的应用前景。
146 5
|
5月前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
143 7
|
5月前
|
存储 监控 算法
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
107 7
|
5月前
|
运维 监控 算法
基于 Python 迪杰斯特拉算法的局域网计算机监控技术探究
信息技术高速演进的当下,局域网计算机监控对于保障企业网络安全、优化资源配置以及提升整体运行效能具有关键意义。通过实时监测网络状态、追踪计算机活动,企业得以及时察觉潜在风险并采取相应举措。在这一复杂的监控体系背后,数据结构与算法发挥着不可或缺的作用。本文将聚焦于迪杰斯特拉(Dijkstra)算法,深入探究其在局域网计算机监控中的应用,并借助 Python 代码示例予以详细阐释。
120 6

热门文章

最新文章

推荐镜像

更多