语料库标注与训练模型---Python自然语言处理(7)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 语料库标注与训练模型---Python自然语言处理(7)

前言


通过前面博文的学习,我们知道在处理自然语言之时,肯定会用到语料库。目前,常用的语料库有PKU(人民日报语料库),MSR(微软亚洲研究院语料库)。而因为PKU是1998年时公开的,随着时代的发展,其分词早已经不大符合大众习惯。加之其手动编写有很多失误。所以,我们将在后面的博文中使用MSR语料库。


语料库就绪之后,就可以开始训练了。相信接触过机器学习的读者,或多或少都对训练并不陌生。训练指的是,给定样本集估计模型参数的过程。对于自然语言处理来说,训练指的是统计N元语法频次。有了频次,通过极大似然估计以及平滑策略,我们就可以估计任意句子的概率分布,就得到语言模型。本篇主要讲解一元语法与二元语法。


加载语料库


在处理自然语言时,我们首先要做的是加载语料库。而HanLP库提供了许多封装好的工具,对于这些通过空格符分割的分词语料库来讲,可以利用HanLP库提供的CorpusLoader.convert2SentencelList加载。


具体代码如下:

if __name__ == "__main__":
    CorpusLoader = SafeJClass('com.hankcs.hanlp.corpus.document.CorpusLoader')
    sents = load_cws_corpus(r"E:\ProgramData\Anaconda3\Lib\site-packages\pyhanlp\static\data\test\icwb2-data\gold\msr_test_gold.utf8")
    for sent in sents:
        print(sent)


运行之后,效果如下:


这里,每一个List都是个语句,且都已经分词成功。


统计语法


一元语法其实就是单词,如果把单词与词频写成纯文本格式,就得到了一部词频词典。有些语料库含有人工标注的词性,因此词典格式还是要支持词性,这也就是HanLP词典格式的涉及初衷。


在HanLP中,一元语法的统计功能由DictionaryMaker提供,二元语法统计由NatureDictionaryMaker提供。通过NatureDictionaryMaker类,我们可以统计一元语法模型,与二元语法模型。


详细代码实现如下:

if __name__ == "__main__":
    NatureDictionaryMaker = SafeJClass('com.hankcs.hanlp.corpus.dictionary.NatureDictionaryMaker')
    CorpusLoader = SafeJClass('com.hankcs.hanlp.corpus.document.CorpusLoader')
    sents = load_cws_corpus(r"E:\ProgramData\Anaconda3\Lib\site-packages\pyhanlp\static\data\test\icwb2-data\gold\msr_test_gold.utf8")
    for sent in sents:
        for word in sent:
            word.setLabel("n")
    maker = NatureDictionaryMaker()
    maker.compute(sents)
    maker.saveTxtTo("123")


运行之后,我们会在同级的项目目录下生成3个文件:


123.txt:一元语法模型

123.ngram.txt:二元语法模型

123.tr.txt:词性标注

具体效果如下:

如上图所示,它们之间用空格分开,分别代表的意思是:单词,词性,词性频次。还有图片没截取到的符号“末##末“,这个符号代表句子结尾,”始##始“代表句子开头。

而二元模型中,@符号分割开二元语法中的两个单词,空格后面是二元语法的频次。


下面,我们再来把该二元模型的搭建转换成通用的函数,毕竟本人用MSR语料库,并不代表所有人都用。通用的方法可以导入任意词典搭建语法模型。

def load_cws_corpus(corpus_path):
    CorpusLoader = SafeJClass('com.hankcs.hanlp.corpus.document.CorpusLoader')
    return CorpusLoader.convert2SentenceList(corpus_path)
#传入语料库路径以及导出模型的名称路径
def train_model(corpus_path,model_path):
    NatureDictionaryMaker = SafeJClass('com.hankcs.hanlp.corpus.dictionary.NatureDictionaryMaker')
    sents = load_cws_corpus(corpus_path)
    for sent in sents:
        for word in sent:
            word.setLabel("n")
    maker = NatureDictionaryMaker()
    maker.compute(sents)
    maker.saveTxtTo(model_path)
相关文章
|
4天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
113 73
|
7天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
46 21
|
9天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
50 23
|
10天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费习惯预测的深度学习模型
使用Python实现智能食品消费习惯预测的深度学习模型
53 19
|
11天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
66 18
|
12天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现深度学习模型:智能食品消费行为预测
使用Python实现深度学习模型:智能食品消费行为预测
50 8
|
8天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
35 2
|
15天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
14天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。