Fisherfaces人脸识别---OpenCV-Python开发指南(44)

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
简介: Fisherfaces人脸识别---OpenCV-Python开发指南(44)

Fisherfaces原理


PAC方法是EigenFaces人脸识别的核心,它找到了最大化数据总方差特征的线性组合。但是其具有明显的缺点,在操作过程中会损失许多人脸的特征信息。因此在某些特殊的情况下,如果损失的信息刚好是用于分类的关键信息,必然导致结果预测错误。


Fisherfaces采用LDA(Linear Discriminant Analysis,线性判别分析)实现人脸识别。线性判别分析最早由Fisher在1936年提出,是一种经典的线性学习方法,也被称为“Fisher判别分析法”。


其基本原理:在低维表示下,相同的类应该紧密地聚集在一起;不同的类别应该尽可能地分散开,并且它们之间的距离尽可能地远。简单的概括,线性判别分析就是尽力满足以下两个要求:


1.类别间的差别尽可能地大

2.类别内的差别尽可能地小


做线性判别分析时,首先将训练集样本集投影到一条直线A上,让投影后的点满足:


1.同类间的点尽可能地靠近

2.异类间的点尽可能地远离


做完投影后,将待测样本投影到直线A上,根据投影点的位置判定样本的类别,就完成了人脸识别。


Fisherfaces实现人脸识别


OpenCV中,通过函数cv2.face.FisherFaceRecognizer_create()生成Fisherfaces识别器实例模型,然后应用cv2.face_FaceRecognizer.train()函数完成训练,最后用cv2.face_FaceRecognizer.predict()函数完成人脸识别。


因为Fisherfaces人脸识别步骤与LBPH、EigenFaces代码步骤一模一样,所以我们直接实战通过Fisherfaces实现人脸识别。具体代码如下所示:


images = []
images.append(cv2.imread("42_1.jpg", cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("42_2.jpg", cv2.IMREAD_GRAYSCALE))
labels = [0, 1]
recognizer = cv2.face.FisherFaceRecognizer_create()
recognizer.train(images, np.array(labels))
predict_image = cv2.imread('42_4.jpg', cv2.IMREAD_GRAYSCALE)
label, confidence = recognizer.predict(predict_image)
if label == 0:
    print("匹配的人脸为尼根")
elif label == 1:
    print("匹配的人脸为瑞克")
print("confidence=", confidence)


运行之后,控制台输出如下:


通过Fisherfaces进行人脸识别,其confidence返回值也在0到20000之间,只要低于5000,都被认为是相当可靠的识别结果。这里,0就是完全匹配。


训练图像:



测试图像:

相关文章
|
数据采集 存储 XML
深入浅出:基于Python的网络数据爬虫开发指南
【2月更文挑战第23天】 在数字时代,数据已成为新的石油。企业和个人都寻求通过各种手段获取互联网上的宝贵信息。本文将深入探讨网络爬虫的构建与优化,一种自动化工具,用于从网页上抓取并提取大量数据。我们将重点介绍Python语言中的相关库和技术,以及如何高效、合法地收集网络数据。文章不仅为初学者提供入门指导,也为有经验的开发者提供进阶技巧,确保读者能够在遵守网络伦理和法规的前提下,充分利用网络数据资源。
|
算法 安全 搜索推荐
深入浅出:使用Python实现人脸识别系统
在当今数字化时代,人脸识别技术已成为安全验证、个性化服务等领域的关键技术。本文将引导读者从零开始,逐步探索如何利用Python和开源库OpenCV来构建一个基础的人脸识别系统。本文不仅会详细介绍环境搭建、关键算法理解,还会提供完整的代码示例,帮助读者理解人脸识别的工作原理,并在实际项目中快速应用。通过本文,您将能够掌握人脸识别的基本概念、关键技术和实现方法,为进一步深入学习和研究打下坚实的基础。
|
算法 计算机视觉 开发者
OpenCV中使用Eigenfaces人脸识别器识别人脸实战(附Python源码)
OpenCV中使用Eigenfaces人脸识别器识别人脸实战(附Python源码)
583 0
|
机器学习/深度学习 存储 监控
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
|
计算机视觉 开发者 Python
OpenCV中Fisherfaces人脸识别器识别人脸实战(附Python源码)
OpenCV中Fisherfaces人脸识别器识别人脸实战(附Python源码)
451 0
|
机器学习/深度学习 XML 搜索推荐
图像自动化保存工具:Python脚本开发指南
图像自动化保存工具:Python脚本开发指南
|
机器学习/深度学习 监控 算法框架/工具
使用Python实现深度学习模型:人脸识别与人脸表情分析
【7月更文挑战第18天】 使用Python实现深度学习模型:人脸识别与人脸表情分析
482 2
|
机器学习/深度学习 人工智能 监控
利用Python和OpenCV实现实时人脸识别系统
【8月更文挑战第31天】本文将引导您了解如何使用Python结合OpenCV库构建一个简易的实时人脸识别系统。通过分步讲解和示例代码,我们将探索如何从摄像头捕获视频流、进行人脸检测以及识别特定个体。本教程旨在为初学者提供一条明晰的学习路径,帮助他们快速入门并实践人脸识别技术。
|
机器学习/深度学习 数据采集 算法
Python实现PCA降维和KNN人脸识别模型(PCA和KNeighborsClassifier算法)项目实战
Python实现PCA降维和KNN人脸识别模型(PCA和KNeighborsClassifier算法)项目实战
|
机器学习/深度学习 数据采集 算法
Python基于MTCNN+FaceNet+SVM进行人脸识别项目实战
Python基于MTCNN+FaceNet+SVM进行人脸识别项目实战

热门文章

最新文章

推荐镜像

更多