用分水岭算法实现图像的分割与提取---OpenCV-Python开发指南(36)

简介: 用分水岭算法实现图像的分割与提取---OpenCV-Python开发指南(36)

图像分割


了解分水岭算法之前,我们需要了解什么是图像的分割。


在图像的处理过程中,经常需要从图像中将前景对象作为目标图像分割或者提取出来。例如,在视频监控中,观测到的是固定背景下的视频内容,而我们对背景本身并无兴趣,感兴趣的是背景中出现的车辆,行人或者其他对象。我们希望将这些对象从视频中提取出来,而忽略那些没有对象进入背景的视频内容。


分水岭算法


图像分割是图像处理过程中一种非常重要的操作。分水岭算法将图像形象地比喻为地理学上的地形表面,实现图像分割,该算法非常有用。


下面,博主对分水岭算法的相关内容做简单的介绍。(详细可以参考冈萨雷斯的《数字图像处理》一书)


任何一副灰度图像,都可以被看作是地理学上的地形表面,灰度值越高的区域可以被看成是山峰,灰度值越低的区域可以被看成是山谷。


如果我们向每个山谷中灌注不同颜色的水。那么随着水位的不断升高,不同山谷的水就汇聚到一起。在这个过程中,为了防止不同山谷的水交汇,我们需要在水流可能汇合的地方构建堤坝。该过程将图像分为两个不同的集合:集水盆地和分水岭线。我们构建的堤坝就是分水岭线,也即对原始图像的分割。这就是分水岭算法的原理。


不过,一般的图像都存在着噪声,采用分水岭算法时,会经常得到过度分割的结果。为了改善图像分割的效果,人们提出了基于掩摸的改进的分水岭算法。改进的分水岭算法允许用户将它认为是同一个分割区域的部分标注出来。这样,分水岭算法在处理时,就会将标注的部分处理为同一个分割区域。


如果对于该理论不怎么了解,可以使用软件PowerPoint中的“删除背景”功能进行观察配合理解。


waterShed函数


OpenCV中,可以使用函数cv2.watershed()函数实现分水岭算法。不过,具体实现的过程,还需要借助形态学函数,距离变换函数cv2.distanceTransform(),cv2.connectedComponents()来完成图像分割。


形态学分割

在使用分水岭算法之前,我们需要对图像进行简单的形态学处理。一般情况下,我们都是使用形态学中的开运算,因为开运算是先腐蚀后膨胀的操作,能够去除图像内的噪声。

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("36.jpg")
k=np.ones((5,5),dtype=np.uint8)
e=cv2.erode(img,k)
result=cv2.subtract(img,e)
plt.subplot(131)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(132)
plt.imshow(e, cmap="gray")
plt.axis('off')
plt.subplot(133)
plt.imshow(result, cmap="gray")
plt.axis('off')
plt.show()


回顾一下,我们前面的开运算函数为cv2.erode(),这里我们首先经过开运算去除噪声。然后减法运算cv2.subtract()获取图像边界。运行之后,效果如下:


distanceTransform函数

当图像内的各个子图没有连接时,可以直接使用形态学的腐蚀操作确定前景对象,但是如果图像内的子图连接在一起时,就很难确定前景对象了。这个时候,就需要借助变换函数cv2.distanceTransform()方便地将前景对象提取出来。


cv2.distanceTransform()反应了各个像素点与背景(值为0的像素点)的距离关系。通常情况下:


如果前景对象的中心距离值为0的像素点距离较远,会得到一个较大的值。

如果前景对象的边缘距离值为0的像素点较近,会得到一个较小的值。

下面,我们来使用该函数确定一副图像的前景,并观察效果。

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("36.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
k = np.ones((5, 5), dtype=np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, k, iterations=2)
distTransform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, fore = cv2.threshold(distTransform, 0.7 * distTransform.max(), 255, 0)
plt.subplot(131)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(132)
plt.imshow(distTransform, cmap="gray")
plt.axis('off')
plt.subplot(133)
plt.imshow(fore, cmap="gray")
plt.axis('off')
plt.show()


这里,我们使用cv2.morphologyEx函数进行开运算,同时使用cv2.distanceTransform得到距离图像,最后在通过cv2.threshold对距离图像进行阈值处理,确定前景。运行之后,效果如下:


确定未知区域

通过距离函数,我们获取到了图像的“中心”,也就是“确定前景”。为了方便后续的讲解,我们将确定前景称为F。


图像中有了确定前景F和确定背景B,剩下的区域就是未知区域UN了。这部分区域正是分水岭算法要进一步明确的区域。


针对一副图像0,通过以下关系能够得到未知区域UN:


未知区域UN=图像0-确定背景B-确定前景F


由上述公式变换得到:


未知区域UN=(图像0-确定背景B)-确定前景F


其中(图像0-确定背景B)就是我们开始的减法操作,通过形态学膨胀得到。也只需要将上面的代码添加4行并更改显示的代码内容:

bg=cv2.dilate(opening,k,iterations=3)
fore=np.uint8(fore)
un=cv2.subtract(bg,fore)
plt.subplot(221)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(222)
plt.imshow(bg, cmap="gray")
plt.axis('off')
plt.subplot(223)
plt.imshow(fore, cmap="gray")
plt.axis('off')
plt.subplot(224)
plt.imshow(un, cmap="gray")
plt.axis('off')
plt.show()


运行之后,效果如下:


左上为原图


右上为原图膨胀后得到的图像bg,其背景图像是确定背景B。前景图像是“原始图像0-确定背景B”


左下为确定前景图像fore


右下为未知区域图像UN


ConnectedComponents函数

明确了确定前景后,就可以对确定前景进行标注了。在OpenCV中,它提供了cv2.ConnectedComponents()函数进行标注。


该函数会将背景标注为0,将其他的对象使用从1开始的正整数标注。它只有一个参数8位单通道的待标注图像。


返回值有两个:retval为返回的标注数量,labels为标注的结果图像。


下面,我们来使用该函数进行标注。代码如下(同样更改上面bg下面代码就行):

bg = cv2.dilate(opening, k, iterations=3)
fore = np.uint8(fore)
ret, markets = cv2.connectedComponents(fore)
unknown=cv2.subtract(bg,fore)
markets=markets+1
markets[unknown==255]=0
plt.subplot(131)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(132)
plt.imshow(fore, cmap="gray")
plt.axis('off')
plt.subplot(133)
plt.imshow(markets, cmap="gray")
plt.axis('off')
plt.show()


修改上面fore = np.uint8(fore)的代码,并修改输出内容。运行之后,我们会得到原图,前景图像的中心点图像fore以及标注后的结果图像markets。效果如下:


实战分水岭算法


经过前文的介绍,我们了解了使用分水岭算法进行图像分割的基本步骤:


通过形态学开运算对原始图像0进行去噪

通过腐蚀操作获取“确定背景B”。需要注意,这里得到“原始图像-确定背景”即可

利用距离变换函数对原始图像进行运算,并对其进行阈值处理,得到“确定前景F”

计算未知区域UN(UN=0-B-F)

利用函数cv2.connectedComponents()对原始图像0进行标注

对函数cv2.connectedComponents()的标注结果进行修正

使用分水岭函数完成图像分割


完整代码如下:


import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("36.jpg")
plt.subplot(121)
plt.imshow(img, cmap="gray")
plt.axis('off')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
k = np.ones((5, 5), dtype=np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, k, iterations=2)
distTransform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, fore = cv2.threshold(distTransform, 0.2 * distTransform.max(), 255, 0)
bg = cv2.dilate(opening, k, iterations=3)
fore = np.uint8(fore)
ret, markets = cv2.connectedComponents(fore)
unknown = cv2.subtract(bg, fore)
markets = markets + 1
markets[unknown == 255] = 0
markets = cv2.watershed(img, markets)
img[markets == -1] = [255, 0, 0]
plt.subplot(122)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.show()


运行之后,我们就可以得到分割的图像:


当然,参数可以调整,可以看到大致的硬币被完整的分割出来了。

相关文章
|
2月前
|
机器学习/深度学习 监控 算法
基于单尺度Retinex和多尺度Retinex的图像增强算法实现
基于单尺度Retinex(SSR)和多尺度Retinex(MSR)的图像增强算法实现
151 1
|
2月前
|
存储 算法 数据安全/隐私保护
基于FPGA的图像退化算法verilog实现,分别实现横向和纵向运动模糊,包括tb和MATLAB辅助验证
本项目基于FPGA实现图像运动模糊算法,包含横向与纵向模糊处理流程。使用Vivado 2019.2与MATLAB 2022A,通过一维卷积模拟点扩散函数,完成图像退化处理,并可在MATLAB中预览效果。
|
2月前
|
监控 算法 决策智能
基于盲源分离与贝叶斯非局部均值的图像降噪算法
基于盲源分离与贝叶斯非局部均值的图像降噪算法
74 0
|
3月前
|
算法 数据安全/隐私保护
基于混沌加密的遥感图像加密算法matlab仿真
本项目实现了一种基于混沌加密的遥感图像加密算法MATLAB仿真(测试版本:MATLAB2022A)。通过Logistic映射与Baker映射生成混沌序列,对遥感图像进行加密和解密处理。程序分析了加解密后图像的直方图、像素相关性、信息熵及解密图像质量等指标。结果显示,加密图像具有良好的随机性和安全性,能有效保护遥感图像中的敏感信息。该算法适用于军事、环境监测等领域,具备加密速度快、密钥空间大、安全性高的特点。
|
5月前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
191 35
|
7月前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
3月前
|
算法 安全 数据安全/隐私保护
基于AES的图像加解密算法matlab仿真,带GUI界面
本程序基于AES算法实现图像的加解密功能,并提供MATLAB GUI界面操作,支持加密与解密。运行环境为MATLAB 2022A,测试结果无水印。核心代码通过按钮回调函数完成AES加密与解密流程,包括字节替换、行移位、列混淆及密钥加等步骤。解密过程为加密逆向操作,确保数据安全性与完整性。完整程序结合128位块加密与可选密钥长度,适用于图像信息安全场景。
|
8月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
6月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
361 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
6月前
|
算法
一次推理,实现六大3D点云分割任务!华科发布大一统算法UniSeg3D,性能新SOTA
华中科技大学研究团队提出了一种名为UniSeg3D的创新算法,该算法通过一次推理即可完成六大3D点云分割任务(全景、语义、实例、交互式、指代和开放词汇分割),并基于Transformer架构实现任务间知识共享与互惠。实验表明,UniSeg3D在多个基准数据集上超越现有SOTA方法,为3D场景理解提供了全新统一框架。然而,模型较大可能限制实际部署。
396 15

热门文章

最新文章

推荐镜像

更多