霍夫变换---OpenCV-Python开发指南(35)

简介: 霍夫变换---OpenCV-Python开发指南(35)

什么是霍夫变换


霍夫变换是一种在图像中寻找直线,圆形以及其他简单形状的方法。霍夫变换采用类似于投票的方式来获取当前图像内的形状集合,该变换由Paul Hough(霍夫)于1962年首次提出。


最初的霍夫变换只能用于检测直线,经过发展后,霍夫变换不仅能够识别直线,还能识别其他简单的图形结构,常见的有圆形,椭圆等。


HoughLines函数


OpenCV中,它给我们提供了cv2.HoughLines()函数来实现霍夫直线变换,该函数要求所有操作的原图是一个二值图像,所以在进行霍夫变换之前,需要将图像进行二值化处理。或者进行Canny边缘检测。


其完整定义如下:

def HoughLines(image, rho, theta, threshold, lines=None, srn=None, stn=None, min_theta=None, max_theta=None):

image:原始图形,必须是8位单通道的二值图像


rho:以像素为单位的距离r的精度。一般情况下,使用的精度是1


theta:为角度θ的精度。一般情况下,使用的精度是Π/180,表示要搜索所有可能的角度


threshold:阈值。该值越小,判定出直线就越多。识别直线时,要判定多少个点位于该直线上。在判定直线是否存在时,对直线所穿过的点的数量进行评估,如果直线所穿过的点的数量小于阈值,则认为这些点恰好在算法构成直线,但是在原始图像中该直线并不存在;如果大于阈值,则认为直线存在。所以,如果阈值越小,就会得到较多的直线;阈值越大,就会得到较少的直线


lines:返回值,它的每个元素都是一对浮点数,表示检测到的直线的参数,即(r,θ)。是numpy.ndarray类型。


HoughLines实战

了解了函数常用的参数之后。下面,我们通过一个棋盘来进行霍夫变换。代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("35.jpg")
plt.subplot(121)
plt.imshow(img, cmap="gray")
plt.axis('off')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
lines = cv2.HoughLines(edges, 1, np.pi / 180, 140)
for line in lines:
    rho, theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho
    x1 = int(x0 + 1000 * (-b))
    y1 = int(y0 + 1000 * (a))
    x2 = int(x0 - 1000 * (-b))
    y2 = int(y0 - 1000 * (a))
    cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
plt.subplot(122)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.show()


运行之后,效果如下:


HoughLinesP实战


使用HoughLines虽然可以完成霍夫变换,但其本身存在非常严重的误检测。为了解决这个问题,OpenCV加入了概率霍夫变换函数cv2.HoughLinesP()函数。


其完整定义如下:

def HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None): 

image:原始图像,比如为8位单通道二值图像


rho:同上


theta:同上


threshold:同上


lines:同上


minLineLength:用来控制”接受直线的最小长度“的值。默认值为0


maxLineGap:用来控制接受共线线段之间的最小间隔,即在一条直线中两点的最大间隔。如果两点间的间隔超过了参数maxLineGap的值,就认为这两点不在一条直线上。默认值为0


将上面的例子,使用HoughLinesP改进以下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("35.jpg")
plt.subplot(121)
plt.imshow(img, cmap="gray")
plt.axis('off')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 10, 10)
for line in lines:
    x1, y1, x2, y2 = line[0]
    cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 5)
plt.subplot(122)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.show()


运行之后,效果如下:


可以看到,这里我们通过函数HoughLinesP,将棋盘线完整的全标记出来了。


HoughCircles实战


霍夫变换出来用来检测直线外,我们还可以用来检测其他的几何对象。实际上,只要是能用一个方程式表示的对象,都适合用霍夫变换来检测。


其中,我们就可以使用霍夫圆变换来检测图像中的圆。这里我们只需要考虑圆心坐标(x,y)与半径r共3个参数。


在OpenCV中要经过2个步骤:


找出可能存在圆的位置(圆心)

根据1计算半径

在OpenCV中,它给我们提供的霍夫圆变换函数为cv2.HoughCircle()。该函数也是将Canny边缘检测与霍夫变换结合,唯一的区别是,不要我们进行Canny边缘检测,该函数自动先进行Canny边缘检测。


其完整定义如下:

def HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None): 

image:原始图像,8位单通道灰度图像


method:检测方法,HOUGH_GRADIENT是唯一可用的参数值。该参数代表霍夫圆检测中两轮检测所使用的方法


dp:累计器分辨率,它是一个分割比例,用来指定图像分辨率与圆心累加器分辨率的比例。例如,如果dp=1,则输入图像和累加器具有相同的分辨率


minDist:圆心间最小间距。该值被作为阈值来使用,如果存在圆心间距小于该值的多个圆,则仅有一个会被检测出来。因此,如果该值太小,则会有很多临近的圆被检测出来;如果该值很大,则可能会在检测时漏掉很多圆


circles:返回值,有圆心坐标和半径构成的numpy.ndarray类型。


param1:该参数缺省,默认100。它对应的是Canny边缘检测器的高阈值(低阈值是高阈值的二分之一)


param2:圆心位置必须受到的投票数。只有在第1论筛选的过程中,投票数超过该值的圆,才有资格进入第2轮的筛选。因此,该值越大,检测到的圆越少;该值越小,检测到的圆越多。也是缺省值,默认100


minRadius:圆半径最小值,小于该值的圆不会被检测出来。也是缺省值,默认0,不起作用


maxRadius:圆半径的最大值,大于该值的圆不会被检测出来。也是缺省值,默认0,不起作用


下面,我们来用一个奥运五环的照片,进行霍夫圆变换。代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("35_1.jpg")
plt.subplot(121)
plt.imshow(img, cmap="gray")
plt.axis('off')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 300, param1=50, param2=20,minRadius=0,maxRadius=0)
circles = np.uint16(np.around(circles))
for i in circles[0, :]:
    cv2.circle(img, (i[0], i[1]), i[2], (255, 0, 0), 12)
    cv2.circle(img, (i[0], i[1]), 2, (255, 0, 0), 12)
plt.subplot(122)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.show()

运行之后,效果如下:

相关文章
|
数据采集 存储 XML
深入浅出:基于Python的网络数据爬虫开发指南
【2月更文挑战第23天】 在数字时代,数据已成为新的石油。企业和个人都寻求通过各种手段获取互联网上的宝贵信息。本文将深入探讨网络爬虫的构建与优化,一种自动化工具,用于从网页上抓取并提取大量数据。我们将重点介绍Python语言中的相关库和技术,以及如何高效、合法地收集网络数据。文章不仅为初学者提供入门指导,也为有经验的开发者提供进阶技巧,确保读者能够在遵守网络伦理和法规的前提下,充分利用网络数据资源。
|
算法 计算机视觉 Python
OpenCV中Canny边缘检测和霍夫变换的讲解与实战应用(附Python源码)
OpenCV中Canny边缘检测和霍夫变换的讲解与实战应用(附Python源码)
778 0
|
机器学习/深度学习 XML 搜索推荐
图像自动化保存工具:Python脚本开发指南
图像自动化保存工具:Python脚本开发指南
|
数据采集 JavaScript 前端开发
Web爬虫开发指南:使用Python的BeautifulSoup和Requests库
Web爬虫是一种从互联网上获取数据的自动化工具,它可以用于抓取网页内容、提取信息和分析数据。Python提供了一些强大的库,其中BeautifulSoup和Requests是两个常用的工具,用于解析HTML内容和发起HTTP请求。本文将介绍如何使用BeautifulSoup和Requests库构建一个简单而有效的Web爬虫。
|
前端开发 API 数据库
Python网站开发指南:构建现代化、高效的Web应用
在当今数字化时代,网站已成为企业、组织以及个人展示自己的重要窗口。Python作为一种简洁、高效且易于学习的编程语言,被广泛运用于网站开发领域。本文将向您介绍如何使用Python进行网站开发,包括常用的Web框架、关键技术和最佳实践。
|
存储 计算机视觉
OpenCV-累计概率霍夫变换cv::HoughLinesP
OpenCV-累计概率霍夫变换cv::HoughLinesP
338 0
|
存储 计算机视觉
OpenCV-标准霍夫变换cv::HoughLines
OpenCV-标准霍夫变换cv::HoughLines
194 0
|
计算机视觉
实现抖音时光倒流效果---OpenCV-Python开发指南(56)
实现抖音时光倒流效果---OpenCV-Python开发指南(56)
334 1
实现抖音时光倒流效果---OpenCV-Python开发指南(56)
|
编解码 算法 计算机视觉
【OpenCV • c++】几何检测 —— 霍夫变换 | 霍夫直线检测 | 霍夫线变化
【OpenCV • c++】几何检测 —— 霍夫变换 | 霍夫直线检测 | 霍夫线变化
608 0
|
计算机视觉
实现抖音慢动作效果---OpenCV-Python开发指南(57)
实现抖音慢动作效果---OpenCV-Python开发指南(57)
352 1

推荐镜像

更多