色彩空间类型---OpenCV-Python开发指南(7)

简介: 色彩空间类型---OpenCV-Python开发指南(7)

前言


在前面,我们只介绍了三种图像的类型,分别位二值图像、灰度图像以及RGB图像。但我们现在常用的图像肯定是RGB图像,不过它只是色彩空间的一种类型,在实际的图像中,还有许多其他的色彩空间,对于会PS的读者来说肯定不会陌生。


比如GRAY色彩空间(灰度图像),XYZ色彩空间,YCrCb色彩空间,HSV色彩空间,HLS色彩空间,CIELab色彩空间,CIELuv色彩空间,Bayer色彩空间等。


每个图像都有其擅长处理的内容,因此我们要掌握这些色彩空间图像的转换,以便后续更方便的处理图像的问题。


GRAY色彩空间


GRAY就是我们前面介绍的灰度图像,通常指8位灰度图像,其具有256个灰度级,像素值范围位[0,255]。


RGB转换位GRAY的数学公式如下:


Gray=0.229R+0.587G+0.114*B


而图像有GRAY色彩空间转换为RGB色彩空间时,最终所有通道的值都是相同的,其处理方式如下:


R=Gray


G=Gray


B=Gray


XYZ色彩空间


XYZ色彩空间是由CIE(International Commission on Illumination)定义的,是一种更便于计算的色彩空间,它不像RGB转换位GRAY,只能单向转换,XYZ色彩空间与RGB转换不会丢失任何值。


将RGB色彩空间转换为XYZ色彩空间,其转换公式为:


将XYZ色彩空间转换为RGB色彩空间,其转换公式为:


YCrCb色彩空间


人眼视觉系统对颜色的敏感度要低于对亮度的敏感度。在传统的RGB色彩空间内,RGB三原色具有相同的重要性,但是忽略了亮度的信息。所以,才有了YCrCb色彩空间。


在YCrCb色彩空间中,Y代表光源的亮度,色度信息保存在Cr和Cb中,其中,Cr表示红色分量信息,Cb表示蓝色分量信息。


亮度给出了颜色亮或暗的程度信息,该信息可以通过照明中强度成分的加权和来计算。在RGB光源中,绿色分量的影响最大,蓝色分量的影响最小。


从RGB色彩空间转换YCrCb色彩空间的数学公式如下:


Y=0.229R+0.587G+0.114*B


Cr=(R-Y)*0.713+delta


Cb=(B-Y)*0.564+delta


其中delta的值为:


从YCrCb色彩空间转RGB数学公式如下:


R=Y+1.403*(Cr-delta)


G=Y-0.714*(Cr-delta)-0.344*(Cb-delta)


B=Y+1.773*(Cb-delta)


HSV色彩空间


RGB是从硬件的角度提出的颜色模型,在与人眼匹配的过程中可能存在一定的差异。而HSV色彩空间是一种面向视觉感知的颜色模型。HSV色彩空间是从心理学和视觉的角度出发,指出人眼色彩知觉主要包含3个要素:色调,饱和度,亮度。


说到这里,相信用过PS的都应该清楚HSV到底能干什么了吧?不过,我们还是介绍一些这3个要素,毕竟本篇博文就是专门将色彩空间理论知识的,不能有空缺。


色调(H):指光的颜色,色调与混合光谱中的主要光波长相关,例如“赤橙黄绿青蓝紫”分别表示不同的色调。如果从波长的角度考虑,不同的波长的光表现为不同的颜色,实际上它们体现的是色调的差异。


饱和度(S):指色彩的深浅层度,相对于纯净度,或一种颜色混合白光的数量。纯谱色是全饱和的,像深红色(红加白)和淡紫色(紫加白)这样的彩色是欠饱和的,饱和度与所加白光的数量成反比。


亮度(V):反映的是人眼感受到的光的明暗程度,该指标与物体的反射度有关。对于色彩来讲,如果在其中掺入的白色越多,则其亮度越高;如果在其掺入的黑色越多,则亮度越低。


在具体的实现上,我们将物理空间的颜色分布在圆周上,不同的角度代表不同的颜色。因此,通过调整色调值,我们就能选取不同的颜色,色调的取值范围为[0,360]。色调取值不同,颜色也不同,具体如下表所示:

色调值(度) 颜色
0 红色
60 黄色
120 绿色
180 青色
240 蓝色
300 品红色

饱和度的值为[0,1],饱和度的值为0时,只有灰度,饱和度越大,颜色值越丰富。至于亮度,其取值范围也是[0,1]。


例如,博主现在取色调=0,饱和度=1,亮度=1,就可以提取色彩深红色。


介绍完理论知识,HSV与上面的色彩空间一样,也需要与RGB进行转换,不过,我们这里转换之前,需要先将RGB色彩空间的值转换到[0,1]之间,然后在进行处理。具体处理如下:


V=max(R,G,B) 亮度


这里,H的计算结果可能小于0,如果出现这种情况,则需要对H进一步的处理计算。如下所示:


上述公式计算的结果肯定与前面说的色调,亮度,饱和度的范围一致。至于HSV转RGB,感兴趣的可以参考开发文档。


HLS色彩空间


HLS与HSV色彩空间类似,都具有3要素。只是HLS色彩空间就L与V不同,其中HLS色彩空间的L(光亮度/明度)替换了亮度。


那么什么是光亮度/明度呢?


其实,光亮度/明度是用来控制色彩的明暗变换,它的取值范围同样也是[0,1]。我们在程序中,可以通过光亮度/明度的大小来衡量有多少光线从物体表面反射出来。光亮度/明度对于眼睛感知颜色很重要,因为当一个具有色彩的物体处于光线太强或者太暗的地方时,眼睛是无法准确获取物体颜色的。


说实话,编辑公式有点费劲,感兴趣的自己查询开发文档,后续在python中开发,我们都是使用cv2.cvtColor()进行转换的。使用起来,你只需要了解其到底做什么的,并不需要知道其内部如何实现,但内部实现,就是上面的这些数学公式。


CIELab*色彩空间


CIELab*色彩空间是均匀色彩空间模型,它是面向视觉感知的颜色模型。从视觉感知均匀的角度来讲,人所感知到的两种颜色的区别程度,应该与这两种颜色在色彩空间中的距离成正比。在某个色彩空间中如果人所观察的两种颜色的区别程度,与这两种颜色在该色彩空间中对应的点之间的欧式距离成正比,则称该色彩空间为均匀色彩空间。


CIELab色彩空间中的L分量用于表示像素的亮度,取值范围为[0,100],表示从纯黑到纯白;a分量表示从红色到绿色的范围,取值范围为[-127,127];b*分量表示从黄色到蓝色的范围,取值范围为[-127.127]。


由于CIELab是在CIE的XYZ色彩空间上发展起来的,所以转换的时候,需要先将RGB转换为XYZ色彩空间,然后在转换为CIELab。具体的数学公式感兴趣的查询开发文档。


CIELuv*色彩空间


CIELuv色彩空间同CIELab色彩空间一样,是均匀的颜色模型。CIELuv*色彩空间与设备无关,适用于显示器显示和根据加色原理进行组合的场合,该模型中比较强调对红色的表示,即对红色的变化比较敏感,但对蓝色的变化不太敏感。


同样的,CIELuv色彩空间也需要先将RGB转换为XYZ色彩空间,然后在转换为CIELuv,具体公式感兴趣的可以查询开发文档。


Bayer色彩空间


Bayer色彩空间被广泛的应用在CCD和CMOS相机中。


色彩空间的理论知识,到这里基本就讲解完成了,感兴趣的可以自己扩展最后几个数学公式。

相关文章
|
5月前
|
索引 Python
Python的变量和简单类型
本文介绍了Python中变量命名规则、常用变量类型及字符串操作。变量命名需遵循字母、数字和下划线组合,不能以数字开头且不可与关键字冲突。字符串支持单引号、双引号或三引号定义,涵盖基本输出、转义字符、索引、拼接等操作。此外,还详细解析了字符串方法如`islower()`、`upper()`、`count()`等,帮助理解字符串处理技巧。
113 15
|
27天前
|
安全 JavaScript Java
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
本文通过10个真实场景,深入解析Python中表示“空值”的None与NoneType。从单例模式、函数返回值,到类型注解、性能优化,全面揭示None在语言设计与实际编程中的核心作用,帮助开发者正确高效地处理“无值”状态,写出更健壮、清晰的Python代码。
119 3
|
1月前
|
缓存 数据可视化 Linux
Python文件/目录比较实战:排除特定类型的实用技巧
本文通过四个实战案例,详解如何使用Python比较目录差异并灵活排除特定文件,涵盖基础比较、大文件处理、跨平台适配与可视化报告生成,助力开发者高效完成目录同步与数据校验任务。
77 0
|
1月前
|
IDE API 开发工具
Python类型注解:让代码“开口说话”的隐形助手
Python类型注解为动态语言增添类型信息,提升代码可读性与健壮性。通过变量、函数参数及返回值的类型标注,配合工具如mypy、IDE智能提示,可提前发现类型错误,降低调试与协作成本。本文详解类型注解的实战技巧、生态支持及最佳实践,助你写出更高质量的Python代码。
105 0
|
4月前
|
Python
Python技术解析:了解数字类型及数据类型转换的方法。
在Python的世界里,数字并不只是简单的数学符号,他们更多的是一种生动有趣的语言,用来表达我们的思维和创意。希望你从这个小小的讲解中学到了有趣的内容,用Python的魔法揭示数字的奥秘。
112 26
|
4月前
|
人工智能 安全 IDE
Python 的类型安全是如何实现的?
本文探讨了 Python 的类型安全实现方式。从 3.5 版本起,Python 引入类型提示(Type Hints),结合静态检查工具(如 mypy)和运行时验证库(如 pydantic),增强类型安全性。类型提示仅用于开发阶段的静态分析,不影响运行时行为,支持渐进式类型化,保留动态语言灵活性。泛型机制进一步提升通用代码的类型安全性。总结而言,Python 的类型系统是动态且可选的,兼顾灵活性与安全性,符合“显式优于隐式”的设计哲学。
|
6月前
|
Rust JavaScript 前端开发
[oeasy]python075_什么是_动态类型_静态类型_强类型_弱类型_编译_运行
本文探讨了编程语言中的动态类型与静态类型、强类型与弱类型的概念。通过实例分析,如Python允许变量类型动态变化(如`age`从整型变为字符串),而C语言一旦声明变量类型则不可更改,体现了动态与静态类型的差异。此外,文章还对比了强类型(如Python,不允许隐式类型转换)和弱类型(如JavaScript,支持自动类型转换)的特点。最后总结指出,Python属于动态类型、强类型语言,对初学者友好但需注意类型混淆,并预告下期内容及提供学习资源链接。
160 22
|
6月前
|
Python Windows
[oeasy]python076_int这个词怎么来的_[词根溯源]整数类型_int_integer_touch
本文探讨了“int”一词的起源及其与整数类型的关联。通过词根溯源,揭示“int”来源于“integer”,意为“完整的数”,与零碎的分数相对。同时分析了相关词汇如“tact”(接触)、“touch”(触摸)及衍生词,如“tangential”(切线的)、“intagible”(无形的)和“integral”(完整的、不可或缺的)。文章还结合编程语言特性,解释了Python作为动态类型、强类型语言的特点,并总结了整型变量的概念与意义。最后预告了后续内容,提供了学习资源链接。
169 11
|
7月前
|
索引 Python
python字符串类型及操作
本文主要讲解字符串类型的表示、操作符、处理函数、处理方法及格式化。内容涵盖字符串的定义、表示方法(单双引号、三引号)、索引与切片、特殊字符转义、常见操作符(如+、*、in等)、处理函数(如len()、str()、chr()等)、处理方法(如.lower()、.split()等)以及格式化方式(如.format())。通过实例代码详细介绍了字符串的各种用法和技巧,帮助读者全面掌握字符串操作。
208 2
python字符串类型及操作
|
6月前
|
存储 C语言 Python
[oeasy]python077_int类型怎么用_整数运算_integer_进制转化_int类
本文主要讲解了Python中`int`类型的应用与特性。首先回顾了`int`词根的溯源,探讨了整型变量的概念及命名规则(如匈牙利命名法)。接着分析了整型变量在内存中的存储位置和地址,并通过`type()`和`id()`函数验证其类型和地址。还介绍了整型变量的运算功能,以及如何通过`int()`函数将字符串转化为整数,支持不同进制间的转换(如二进制转十进制)。此外,文章提及了关键字`del`的使用场景,对比了Python与C语言中`int`的区别,并总结了整型与字符串类型的差异,为后续深入学习奠定基础。
103 1

热门文章

最新文章

推荐镜像

更多