深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现

简介: 深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现

1 Affine与Softmax层的实现


1.1 Affine层


神经元的加权和可以用Y = np.dot(X, W) + B计算出来。然后,Y 经过激活函数转换后,传递给下一层。这就是神经网络正向传播的流程。


神经网络的正向传播中进行的矩阵的乘积运算在几何学领域被称为仿射变换。将进行仿射变换的处理实现为“Affine

fe9ab3f162b049d2bd6b4d0ee680e377.png


Y = np.dot(X, W) + B,计算图如下:


f49c396201b446cd890c4a4bb52379ab.png

c517d45f9c8b4582908a8593a63692cf.png


式中WTT表示转置。转置操作会把W的元素(i, j)换成元素(j, i)


f0cbce80a795444a99988731f630f82e.png

5c6cc468e4f84905a2d6d43712a00cfb.png


X和αL/αX形状相同,WαL/αW形状相同。从下面的数学式可以很明确地看出X

αL/αX形状相同。


image.png


1.2 批量版的Affine层


前面介绍的Af ne层的输入X是以单个数据为对象的。现在我们考虑N个数据一起进行正向传播的情况,也就是批版本的Affine层。


image.png

image.png


1.3 Softmax-with-Loss层


softmax函数会将输入值正规化之后再输出。比如手写数字识别时,Softmax层的输出如图所示。


image.png


注:神经网络中进行的处理有推理(inference)和学习两个阶段。神经网络的推理通常不使用Softmax层。比如,用图5-28的网络进行推理时,会将最后一个Affine层的输出作为识别结果。神经网络中未被正规化的输出结果(上图中 Softmax 层前面的 Affine 层的输出)有时被称为“得分”。也就是说,当神经网络的推理只需要给出一个答案的情况下,因为此时只对得分最大值感兴趣,所以不需要Softmax层。不过,神经网络的学习阶段则需要Softmax层。


下面来实现Softmax层。考虑到这里也包含作为损失函数的交叉熵误差( cross entropy error),所以称为“ Softmax-with-Loss层”。 Softmax-withLoss层( Softmax函数和交叉熵误差的计算图如下图所示。


注意:交叉熵函数中的log是默认以e为底的。


image.png

计算图简化版:

image.png


softmax函数记为Softmax层,交叉熵误差记为Cross Entropy Error层。这里假设要进行3类分类,从前面的层接收3个输入(得分)。如图5-30所示, Softmax层将输入( a1, a2, a3)正规化,输出( y1,y2, y3)。 Cross Entropy Error层接收Softmax的输出( y1, y2, y3)和教师标签( t1,t2, t3),从这些数据中输出损失L。


Softmax层的反向传播得到了( y1 - t1, y2 - t2, y3 - t3)这样“漂亮”的结果。由于( y1, y2, y3)是Softmax层的输出,( t1, t2, t3)是监督数据,所以( y1 - t1, y2 - t2, y3 - t3)是Softmax层的输出和教师标签的差分。神经网络的反向传播会把这个差分表示的误差传递给前面的层,这是神经网络学习中的重要性质。


注:使用交叉熵误差作为 softmax 函数的损失函数后,反向传播得到( y1 - t1, y2 - t2, y3 - t3)这样“漂亮”的结果。实际上,这样“漂亮”  的结果并不是偶然的,而是为了得到这样的结果,特意设计了交叉熵误差函数。回归问题中输出层使用“恒等函数”,损失函数使用“平方和误差”,也是出于同样的理由(3.5节)。也就是说,使用“平方和误差”作为“恒等函数”的损失函数,反向传播才能得到( y1 -t1, y2 - t2, y3 - t3)这样“漂亮”的结果。


softmax-with-Loss层的代码实现:


image.png

请注意反向传播时,将要传播的值除以批的大小( batch_size)后,传递给前面的层的是单个数据的误差。



相关文章
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
2月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
74 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
2月前
|
安全 C#
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
|
1月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
完成切换网络+修改网络连接图标提示的代码框架
完成切换网络+修改网络连接图标提示的代码框架
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
3月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
57 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
下一篇
无影云桌面