C++从入门到精通(第一篇) :C++的入门(基础语法的整理)

简介: 在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作 用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字 污染,namespace关键字的出现就是针对这种问题的。

C++从入门到精通(第一篇) :C++的入门(基础语法的整理)


一.C++关键字(C++98)

1.png这里不做具体的讲解,只是了解下就可以了


二.命名空间


在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作 用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字 污染,namespace关键字的出现就是针对这种问题的。


  • 解决命名冲突的问题


命名空间定义


定义命名空间,需要使用到namespace关键字, 后面跟命名空间的名字,然后接一对{}即可,{}中即为命名空间的成员。

//1. 普通的命名空间
namespace N1 // N1为命名空间的名称
{
 // 命名空间中的内容,既可以定义变量,也可以定义函数
 int a;
 int Add(int left, int right)
 {
 return left + right;
 }
}
//2. 命名空间可以嵌套
namespace N2
{
 int a;
 int b;
 int Add(int left, int right)
 {
 return left + right;
 }
 namespace N3
 {
 int c;
 int d;
 int Sub(int left, int right)
 {
 return left - right;
 }
 }
}
//3. 同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
namespace N1
{
 int Mul(int left, int right)
 {
 return left * right;
 }
}

注意:一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中


命名空间使用


  • 命名空间的使用有三种方式:


  1. 加命名空间名称及作用域限定符:
int main()
{
 printf("%d\n", N::a);
 return 0; 
}

2.使用using将命名空间中成员引入

using N::b;
int main()
{
 printf("%d\n", N::a);
 printf("%d\n", b);
 return 0; 
}

3.使用using namespace 命名空间名称引入

using namespce N;
int main()
{
 printf("%d\n", N::a);
 printf("%d\n", b);
 Add(10, 20);
 return 0; 
}


三.C++输入&输出

#include<iostream>
using namespace std;
int main()
{
 cout<<"Hello world!!!"<<endl;
 return 0;
}

说明:


  1. 使用cout标准输出(控制台)和cin标准输入(键盘)时,必须包含< iostream >头文件以及std标准命名空 间。 注意:早期标准库将所有功能在全局域中实现,声明在.h后缀的头文件中,使用时只需包含对应头文件 即可,后来将其实现在std命名空间下,为了和C头文件区分,也为了正确使用命名空间,规定C++头文 件不带.h;旧编译器(vc 6.0)中还支持<iostream.h>格式,后续编译器已不支持,因此推荐使用 +std的方式。


  1. 使用C++输入输出更方便,不需增加数据格式控制,比如:整形--%d,字符--%c
#include <iostream>
using namespace std;
int main()
{
 int a;
 double b;
 char c;
 cin>>a;
 cin>>b>>c;
 cout<<a<<endl;
 cout<<b<<" "<<c<<endl;
 return 0;
}

注:但是对于有特别的格式要求的输出,如输出小数点后几位则建议使用printf(cout会非常的麻烦)


四: 缺省参数


  • 概念:


缺省参数是声明或定义函数时为函数的参数指定一个默认值

在调用该函数时,如果没有指定实参则采用该默认值,否则使用指定的实参


  • 例:
void test(int a = 0)
{
  cout << a << endl;
}
int main()
{
  test();// 没有传参时,使用参数的默认值
  test(1);// 传参时,使用指定的实参
  return 0;
}

1.png


缺省参数分类


1. 全缺省参数

void TestFunc(int a = 10, int b = 20, int c = 30)
{
    cout<<"a = "<<a<<endl;
    cout<<"b = "<<b<<endl;
    cout<<"c = "<<c<<endl;
}


2.半缺省参数

void TestFunc(int a, int b = 10, int c = 20)
{
    cout<<"a = "<<a<<endl;
    cout<<"b = "<<b<<endl;
    cout<<"c = "<<c<<endl;
}
  • 注意:


  1. 半缺省参数必须从右往左依次来给出,不能间隔着给


  1. 缺省参数不能在函数声明和定义中同时出现
//a.h
void TestFunc(int a = 10);
// a.c
void TestFunc(int a = 20)
{}
// 注意:如果生命与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该用那
// 个缺省值。
  1. 缺省值必须是常量或者全局变量


  1. C语言不支持(编译器不支持)


五:函数重载


自然语言中,一个词可以有多重含义,人们可以通过上下文来判断该词真实的含义,即该词被重载了。


比如:以前有一个笑话,国有两个体育项目大家根本不用看,也不用担心。一个是乒乓球,一个是男足。前 者是“谁也赢不了!”,后者是“谁也赢不了!”


函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的 形参列表(参数个数 或 类型 或 顺序)必须不同,常用来处理实现功能类似数据类型不同的问题


  • 示例:
int Add(int left, int right)
{
    return left + right;
}
double Add(double left, double right)
{
  return left + right;
}
long Add(long left, long right)
{
  return left + right;
}
int main()
{
  Add(10, 20);
  Add(10.0, 20.0);
  Add(10L, 20L);
  return 0;
}

注:函数是否重载一定是在函数名相同下关于函数参数是否不同(函数参数的类型,个数,顺序三者满足其中之一即可)


名字修饰


为什么C++支持函数重载,而C语言不支持函数重载呢?


  • 在C/C++中,一个程序要运行起来,需要经历以下几个阶段:预处理、编译、汇编、链接。

1.png

1.png

  • 当前a.cpp中调用了b.cpp中定义的Add函数时:


  1. 编译后链接前,a.o的目标文件中没有Add的函数地址,因为Add是在b.cpp中定义的,所以Add的地址在b.o中
  2. 链接器看到a.o调用Add,但是没有Add的地址,就会到b.o的符号表中找Add的地址,然后链接到一起
  3. 链接时,面对Add函数,连接器会根据编译器自己的函数名修饰规则去找对应出现的函数,而C/C++的命名修饰是不同的
  • 示例:使用gcc演示修饰后的函数名字

1.png

说明:在linux下,采用gcc编译完成后,函数名字的修饰没有发生改变


  • C不支持函数重载:


如果有重载函数(函数名相同,参数不同),根据C语言的名字修饰规则,那么在编译后生成的符号表则会存在多个相同的函数名,在链接对应函数的地址时则会有歧义,无法链接成功,也就无法支持函数重载


  • 采用C++编译器编译后结果

1.png

说明:在linux下,采用g++编译完成后,函数名字的修饰发生改变,编译器将函数参数类型信息根据规则添加到修改后的名字中

  • C++支持函数重载:
  • 在链接对应函数地址时,其函数名字修饰规则会根据参数生成不同的函数名字,从而使得呢能够成功找到对应函数地址,并连接成功,也就支持了函数重载


注:windows命名规则比linux复杂,但本质上原理都是一致的;也因为函数名字修饰的规则,函数重载要求参数不同,而跟返回值没关系


extern “C”


有时候在C++工程中可能需要将某些函数按照C的风格来编译,在函数前加extern "C",意思是告诉编译器,将该函数按照C语言规则来编译


  • 例:


tcmalloc是google用C++实现的一个项目,他提供tcmallc()和tcfree两个接口来使用,但如果是C项目就没办法使用,那么他就使用extern “C”来解决


例:

extern "C" int Add(int left, int right);
int main()
{
    Add(1,2);
    return 0;
}
//链接时报错:error LNK2019: 无法解析的外部符号_Add,该符号在函数 _main 中被引用


六:引用


  • 概念


引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它 引用的变量共用同一块内存空间。


  • 类型& 引用变量名(对象名) = 引用实体;
void TestRef()
{
int a = 10;
int& ra = a;//<====定义引用类型
printf("%p\n", &a);
printf("%p\n", &ra);
}


注意:引用类型必须和引用实体是同种类型的


引用特性


引用在定义时必须初始化

一个变量可以有多个引用

引用一旦引用一个实体,再不能引用其他实体


引用和指针的区别


在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。

int main()
{
int a = 10;
int& ra = a;
cout<<"&a = "<<&a<<endl;
cout<<"&ra = "<<&ra<<endl;
return 0;
}

在底层实现上实际是有空间的,因为引用是按照指针方式来实现的

引用和指针的不同点:


  1. 引用在定义时必须初始化,指针没有要求
  2. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型 实体
  3. 没有NULL引用,但有NULL指针
  4. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占 4个字节)
  5. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
  6. 有多级指针,但是没有多级引用
  7. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
  8. 引用比指针使用起来相对更安全


内联函数


  • 概念


以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数压栈的开销, 内联函数提升程序运行的效率。


  • 特性


inline是一种以空间换时间的做法,省去调用函数额开销。所以代码很长或者有循环/递归的函数不适宜 使用作为内联函数。


inline对于编译器而言只是一个建议,编译器会自动优化,如果定义为inline的函数体内有循环/递归等 等,编译器优化时会忽略掉内联。


inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会 找不到。

// F.h
#include <iostream>
using namespace std;
inline void f(int i);
// F.cpp
#include "F.h"
void f(int i)
{
cout << i << endl;
}
// main.cpp
#include "F.h"
int main()
{
f(10);
return 0;
}
// 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl f(int)" (?
//f@@YAXH@Z),该符号在函数 _main 中被引用


auto关键字(C++11)


C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型 指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。

int TestAuto()
{
return 10;
}
int main()
{
int a = 10;
auto b = a;
auto c = 'a';
auto d = TestAuto();
cout << typeid(b).name() << endl;
cout << typeid(c).name() << endl;
cout << typeid(d).name() << endl;
//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
return 0;
}
  • 注意


使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类 型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为 变量实际的类型。


九:基于范围的for循环(C++11)


范围for的语法


在C++98中如果要遍历一个数组,可以按照以下方式进行:

void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
array[i] *= 2;
for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p)
cout << *p << endl;
}
void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for(auto& e : array)
e *= 2;
for(auto e : array)
cout << e << " ";
return 0;
}
void TestFor(int array[])
{
for(auto& e : array)
cout<< e <<endl;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中 引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分: 第一部分是范围内用于迭代的变量, 第二部分则表示被迭代的范围

void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for(auto& e : array)
e *= 2;
for(auto e : array)
cout << e << " ";
return 0;
}


十:指针空值nullptr(C++11)


在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的 错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:

void TestPtr()
{
int* p1 = NULL;
int* p2 = 0;
// ……
}

NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif

可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何种定义,在 使用空值的指针时,都不可避免的会遇到一些麻烦,比如:

void f(int)
{
cout<<"f(int)"<<endl;
}
void f(int*)
{
cout<<"f(int*)"<<endl;
}
int main()
{
f(0);
f(NULL);
f((int*)NULL);
return 0;
}

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。 在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下 将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。


注意:1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。 2. 在C++11中,sizeof(nullptr) 与 sizeof((void)0)所占的字节数相同。 3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。*


总结


本章讲的知识之所以比较杂和乱,是因为我们要先打好基础,为了下一章的类和对象

相关文章
|
2月前
|
编译器 C++
C++入门12——详解多态1
C++入门12——详解多态1
47 2
C++入门12——详解多态1
|
2月前
|
C++
C++入门13——详解多态2
C++入门13——详解多态2
88 1
|
2月前
|
存储 安全 编译器
【C++打怪之路Lv1】-- 入门二级
【C++打怪之路Lv1】-- 入门二级
28 0
|
2月前
|
自然语言处理 编译器 C语言
【C++打怪之路Lv1】-- C++开篇(入门)
【C++打怪之路Lv1】-- C++开篇(入门)
37 0
|
2月前
|
分布式计算 Java 编译器
【C++入门(下)】—— 我与C++的不解之缘(二)
【C++入门(下)】—— 我与C++的不解之缘(二)
|
2月前
|
编译器 Linux C语言
【C++入门(上)】—— 我与C++的不解之缘(一)
【C++入门(上)】—— 我与C++的不解之缘(一)
|
2月前
|
编译器 C++
C++入门11——详解C++继承(菱形继承与虚拟继承)-2
C++入门11——详解C++继承(菱形继承与虚拟继承)-2
40 0
|
27天前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
48 2
|
1月前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
94 5
|
1月前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
83 4