Java线程池介绍

简介: 线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。

java线程池介绍

java高并发应用频繁创建和销毁线程的操作将是非常低效的,而且不被编程规范所允许的。如何降低java线程的创建成本,就必须用到线程池。

线程池主要解决以下问题:

1).提升性能: 线程池能独立负责线程的创建、维护、分配。在执行大量异步任务时,可以不需要自己创建线程,而是将任务交给线程池去调度。线程池能尽可能的使用空闲线程,去执行异步任务,最大限度的对已经创建的线程进行复用。使得性能有明显的提升。
2).线程管理: 每个java线程池都会保持一些线程的统计信息,例如完成的任务数量、空闲时间等,以便对线程进行有效的管理,使得能对所接受到的异步任务进行高效的调度。

JUC的线程池框架(JUC:java并发包的缩写)
JUC的线程池框架图
java线程池的基本结构
在这里插入图片描述

ThreadPoolExecutor的构造方法源码:

    public ThreadPoolExecutor(int corePoolSize, //核心线程数(即空闲多长时间也不会被回收)
                              int maximumPoolSize, //线程数的上线
                              long keepAliveTime, //空闲线程的存活时间
                              TimeUnit unit,  //keepAliveTime参数的时间单位
                              BlockingQueue<Runnable> workQueue, //任务的排队队列
                              ThreadFactory threadFactory, //新线程的生产方式
                              RejectedExecutionHandler handler) //拒绝策略
线程池的任务调度流程:
线程池的任务调度流程

execut方法的源码:

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
        //工作线程数量小于核心线程数量,执行这个方法新建工作线程
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        //如果核心线程数量大于核心线程数,就把任务添加到阻塞队列中
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        //如果阻塞队列也满了,创建新线程
        //如果创建新线程失败了,说明线程数达到了最大线程数,则执行拒绝策略
        else if (!addWorker(command, false))
            reject(command);
    }

execut方法执行流程图:
在这里插入图片描述

runWorker方法源码(主要线程的主循环)

final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        //拿到了一个任务
        Runnable task = w.firstTask;
        ...
        try {
                //第一次循环task不为空,直接进入循环体
                //第二次循环task为空,执行||后面的逻辑判断(task = getTask()) != null
                //getTask()是从 线程池队列中获取任务
                //此出while循环的作用就是:一直循环读取线程池队列中的任务并执行
            while (task != null || (task = getTask()) != null) {
               ...
                try {
                    beforeExecute(wt, task); //任务执行之前的钩子
                    try {
                        //执行任务
                        task.run();
                        afterExecute(task, null); //任务执行之后的钩子
                    } catch (Throwable ex) {
                        afterExecute(task, ex);
                        throw ex;
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

线程池是一把双刃剑:

优点:
1).降低资源消耗:线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,通过重复利用已经创建的线程,可以降低线程创建和销毁造成的消耗。
2).提高响应速度:当任务到达时,可以不用等待线程创建就能立即执行任务。
3).提高线程的可管理性:线程池提供了一种限制、管理资源的策略,维护一些基本的线程统计信息,如已完成任务的数量等。通过线程池可以对线程资源进行统一的分配、监控和调优。
缺点:
虽然线程池的好处很多,但是其线程数量配置不合理,不仅可能达不到预期的效果,反而会降低应用的性能。

线程的数量和异步任务类型是分不开的,根据所执行异步任务的类型合理的配置线程数量。
线程池的异步任务分为三类:
1.IO密集型任务

此类任务主要执行IO操作。由于IO的执行时间较长,导致CPU的利用率不高,这类CPU常处于空闲状态。例如 Netty的IO读写操作。
一般核心线程数是cpu核数的两倍

2.CPU密集型任务

此类任务主要是执行计算任务。由于相应时间很快CPU一直在运行,这种任务CPU的利用率很高。
一般情况下线程数就是cpu的核数

3.混合型任务

此类任务既要执行逻辑计算,也要执行IO操作(如RPC调用、数据库访问)。相对来说由于执行IO操作的耗时较长(一次网络往返往往在数百毫秒级别),这类任务CPU利用率也不是太高。例如 Web服务器的HTTP请求处理操作。
理论最佳线程数=((线程等待时间+线程cpu时间)/ 线程cpu时间)* CPU核数
化简后为:理论最佳线程数=(线程等待时间与线程CPU时间之比+1)*CPU核数

一般情况下,需要根据不同的异步任务类型创建不同的线程池,并进行针对性的配置参数。

目录
相关文章
|
8天前
|
缓存 Java
深入理解Java并发编程:线程池的应用与优化
【5月更文挑战第30天】本文将深入探讨Java并发编程中的一个重要主题——线程池。我们将详细解析线程池的概念、应用及其优化方法,帮助读者更好地理解和使用线程池,提高程序的性能和效率。
|
7天前
|
缓存 监控 安全
Java的线程池和线程安全
Java的线程池和线程安全
|
10天前
|
设计模式 监控 Java
Java多线程基础-11:工厂模式及代码案例之线程池(一)
本文介绍了Java并发框架中的线程池工具,特别是`java.util.concurrent`包中的`Executors`和`ThreadPoolExecutor`类。线程池通过预先创建并管理一组线程,可以提高多线程任务的效率和响应速度,减少线程创建和销毁的开销。
31 2
|
1天前
|
缓存 Java 测试技术
Java性能优化(八)-多线程调优-线程池大小设置
Java性能优化(八)-多线程调优-线程池大小设置
4 0
|
6天前
|
缓存 安全 Java
Java的线程池与并发工具类技术性文章
Java的线程池与并发工具类技术性文章
10 0
|
7天前
|
Java
Java并发编程:深入理解线程池
【5月更文挑战第30天】本文将深入探讨Java并发编程中的一个重要概念——线程池。我们将了解线程池的基本概念,如何创建和使用线程池,以及线程池的优点和缺点。此外,我们还将讨论一些与线程池相关的高级主题,如自定义线程工厂,拒绝策略和线程池的关闭。通过本文,读者将对Java线程池有一个全面的理解,并能在实际开发中有效地使用线程池。
|
7天前
|
Java 调度
如何合理设置Java线程池大小
如何合理设置Java线程池大小
14 0
|
7天前
|
监控 Java 调度
Java并发编程:线程池的原理与实践
【5月更文挑战第30天】 在现代软件开发中,尤其是Java应用中,并发编程是一个不可忽视的领域。线程池作为提升应用性能和资源利用率的关键技术之一,其正确使用和优化对系统稳定性和效率至关重要。本文将深入探讨线程池的核心原理、常见类型以及在实际开发中的使用案例,旨在帮助开发者更好地理解和运用线程池技术,构建高性能的Java应用程序。
|
8天前
|
监控 算法 Java
深入理解Java并发编程:线程池的应用与优化
【5月更文挑战第30天】 在Java开发中,线程是实现并发处理的基础。然而,随着系统复杂性的增加和资源管理的需要,合理利用线程池已成为提升性能、保证系统稳定性的关键策略。本文将探讨线程池的核心原理,分析其应用场景,并提出优化线程池性能的实践建议,旨在帮助开发者更高效地使用Java进行并发编程。
|
8天前
|
安全 Java 调度
Java并发编程:线程池深入解析
【5月更文挑战第29天】本文将详细探讨Java中的线程池技术,包括其基本原理、使用方法以及在实际开发中的应用。我们将通过实例代码和性能分析,深入理解线程池的优势和潜在问题,为高效、安全的并发编程提供指导。