复杂时序逻辑电路

简介: 1. 时序逻辑电路的基本结构和分类1-1. 基本结构时序逻辑电路由组合电路和存储电路两部分组成,通过反馈回路将两部分连成一个整体。时序逻辑电路的一般结构如下图所示。图中,X~1~,…,X~n~为时序逻辑电路的输入信号;Z~1~,…,Z~m~为时序逻辑电路的输出信号;y~1~,…,y~s~为时序逻辑电路的状态信号,又称为组合电路的状态变量;Y~1~,…,Y~r~为时序逻辑电路中的激励信号,它决定电路下一时刻的状态;CP为时钟脉冲信号,它是同步时序逻辑电路中的定时信号。​ 若记输入信号为$\vec{X}$,输出信号为$\vec{Z}$,激励信号为$\vec{Y}$,状态信号为$\v

1. 时序逻辑电路的基本结构和分类

1-1. 基本结构

时序逻辑电路由组合电路和存储电路两部分组成,通过反馈回路将两部分连成一个整体。时序逻辑电路的一般结构如下图所示。

图中,X~1~,…,X~n~为时序逻辑电路的输入信号;Z~1~,…,Z~m~为时序逻辑电路的输出信号;y~1~,…,y~s~为时序逻辑电路的状态信号,又称为组合电路的状态变量;Y~1~,…,Y~r~为时序逻辑电路中的激励信号,它决定电路下一时刻的状态;CP为时钟脉冲信号,它是同步时序逻辑电路中的定时信号。

若记输入信号为$\vec{X}$,输出信号为$\vec{Z}$,激励信号为$\vec{Y}$,状态信号为$\vec{y}$,于是上述的4个向量之间的转换关系可以由下面的三个公式表示:

其中,式1-1.1表达了输出信号与输入信号和状态信号之间的关系,被称为输出方程组;式1-1.2表示了激励信号与状态信号和输入信号之间的关系,称为时序电路的激励方程;式1-1.3表示了电路从现态到次态的转换过程,被称作状态转换方程。

在这里大家可以看到,上面的时序电路又是状态($\vec{y}$)依赖的,我们常把这样的电路叫做状态机。

1-2. 时序逻辑电路的分类

1-2-1. 异步时序电路与同步时序电路

关于这个问题在上一章有过讨论。这里还要再啰嗦两句。

可以这样理解:如果时序电路中个存储单元的状态更新不是同时发生的,则这种电路称为异步时序电路;如果个存储电路状态是在同一信号的同一边沿更新的,就可以称作同步时序电路。

导致这种更新不同步的原因可能是:电路的触发器的时钟输入端没有连接在相同的时钟脉冲上,或者这个电路里根本就没有时钟脉冲。

1-2-2. 米利型和摩尔型电路

关于这个问题的详细描述将在下一章出现。

2. 几个典型的时序逻辑电路

多个触发器在同一时钟下组合在一起,来保存相关信息的电路称为寄存器。就像触发器一样, 寄存器也可以有其它的控制信号。你将了解具有附加控制信号的寄存器的行为。

计数器是广泛使用的时序电路。在本次实验中,你将用几种方法设计寄存器和计数器。 请参考Vivado 教程上关于如何使用Vivado创建工程和验证电路。

2-1. 可同步重置、载入信号的寄存器

在计算机系统中,相关信息常常在同时被存储。 寄存器(register )以这样的方式存储信息比特,即系统可以在同一时间写入或读出所有的比特。寄存器的例子包含数据、地址、控制和状态。简单的寄存器数据的输入引脚和输出引脚分开,但它们用相同的时钟源。一个简单寄存器的设计如下。

module Register (input [3:0] D, input Clk, output reg [3:0] Q);
  always @(posedge Clk)
    Q <= D;
endmodule

这个简单的寄存器会在每个时钟周期工作,保存需要的信息。然而,在有的情况下,需要只有在特定条件发生时,寄存器内容才被更新。比如,在计算机系统中的状态寄存器只在特定的指令执行时才更新。在这种情况下,寄存器的时钟需要用一个控制信号控制。这样的寄存器需要包含一个时钟使能引脚。下面是这种寄存器的设计。

module Register_with_synch_load_behavior(input [3:0] D, input Clk, 
                                         input load, output reg [3:0] Q);
  always @(posedge Clk)
    if (load)
      Q <= D;
endmodule

  1. 添加开发板相对应的XDC文件,编辑XDC文件,加入相关的引脚,将 Clk 赋给 SW15,D input 给SW3-SW0,reset 给 SW4, load 给 SW5,Q 给 LED3- LED0。
  2. 把下面这行代码加入XDC文件,使SW15 允许被当作时钟使用。 set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets { clk }];
  3. 综合你的设计。
  4. 实现你的设计,查看Project Summary和Utilization table,注意到1个BUFG和 11 个IO被使用了。
  5. 生成比特流文件,将其下载到Nexys4 DDR开发板,并验证功能。
相关文章
|
4月前
CAN总线位时序的介绍
CAN总线利用CAN_H和CAN_L线的电位差传输数据,显性电平(0,2.5V差值)对应逻辑0,隐性电平(1,0V差值)对应逻辑1。由于NRZ无返回零通信方式,同步是个挑战,特别是距离远时。为解决同步问题,CAN总线采用硬件同步和再同步技术,位时序分为同步段、传播段、两个相位缓冲段,每个段由Tq时间量子构成,允许调整以确保多个单元间的同步采样。
50 0
|
4月前
|
算法 异构计算
基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench
基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench
|
4月前
CAN总线位时序
CAN控制器根据两根线上的电位差来判断总线电平。总线电平分为显性电平和隐性电平,二者必居其一。发送方通过使总线电平发生变化,将消息发送给接收方。 显性电平对应逻辑 0,CAN_H 和 CAN_L 之差为 2.5V 左右。而隐性电平对应逻辑 1,CAN_H 和 CAN_L 之差为0V。隐形电平具有包容的意味,只有所有的单元都输出隐性电平,总线上才为隐性电平(显性电平比隐性电平更强)。 CAN总线是采用NRZ(Non-Return to Zero)方法进行通讯的,这种通信有一种不好的地方,就是各个位的开头或者结尾都没有附加同步信号。CAN总线在长距离运输中,由于发送单元和接收单元存在的时钟频率
31 0
|
11月前
|
存储 数据采集
时序逻辑电路的应用及其作用
一、什么时序逻辑电路 时序逻辑电路是一种电子电路,用于处理和存储时序信息。它通过使用时钟信号来控制电路的行为,以实现特定的功能。 时序逻辑电路通常由触发器和组合逻辑电路组成。触发器是一种存储器件,可以存储和传递电信号。组合逻辑电路则根据输入信号的组合产生输出信号。 时序逻辑电路的行为是根据时钟信号的变化来确定的。时钟信号是一个周期性的信号,用于同步电路的操作。在每个时钟周期中,电路根据输入信号和当前状态来计算输出信号,并在时钟信号的上升沿或下降沿时更新状态。 时序逻辑电路可以用于实现各种功能,如计数器、状态机、时序控制器等。它在数字系统中起着重要的作用,用于处理时序信息和控制电路的行为。 二、
552 0
|
11月前
|
存储 芯片
基本逻辑电路的介绍
基本逻辑电路:从门电路到集成电路 逻辑电路是数字电路中的一种,它用于处理和操作数字信号。逻辑电路可以根据输入信号的不同组合,产生不同的输出信号。在数字系统中,逻辑电路扮演着重要的角色,它们可以实现计算、控制、存储等功能。本文将介绍逻辑电路的基本原理和发展历程。 一、门电路:逻辑电路的基础 门电路是逻辑电路的基础,它是由逻辑门电路组成的。逻辑门电路是一种基本的数字电路元件,它可以实现与门、或门、非门等逻辑运算。门电路的输入和输出都是数字信号,它们通过逻辑门电路的布尔运算产生不同的输出信号。门电路可以根据不同的逻辑运算实现不同的功能,如逻辑运算、比较运算、计数运算等。 二、组合逻辑电路:多
141 0
|
10月前
一阶动态电路时域分析
一阶动态电路时域分析是指研究电路在时间域内响应特性的一种分析方法。 一阶动态电路时域分析的主要特征和意义如下: 对象是一阶电路。一阶电路指其动态行为可以用一个一阶微分方程描述的电路,如RC电路、RL电路等。 分析域是时间域。研究的不是电路在不同频率下的频率响应,而是输入信号作用下输出量随时间的变化规律。 研究内容是电路的时域响应特性。如电路对阶跃输入的阶跃响应、对脉冲输入的脉冲响应曲线等。 主要方法是解一阶微分方程。根据电路的等效模型写出其一阶微分方程,然后选择适当解法求其时间域解。 目的是分析电路的动态性能。如过渡过程、时间常数、稳态误差等定量参数,为电路设计和应用提供参考。
200 0
|
算法 异构计算
m基于uw导频序列和cordic算法的基带数据帧频偏估计和补偿FPGA实现,包含testbench
m基于uw导频序列和cordic算法的基带数据帧频偏估计和补偿FPGA实现,包含testbench
99 2
|
4月前
|
关系型数据库
内置功率 MOSFET 的高频同步整流降压开关变换器
一、基本描述 MP2315 是一款内置功率 MOSFET 的高频同步整流降压开关变换器。它提供了非常紧凑的解决方案,在宽输入范围内可实现 3A 连续输出电流,具有出色的负载和线性调整率。MP2315 在输出电流负载范围内采用同步工作模式以达到高效率。其电流控制模式提供了快速瞬态响应,并使环路更易稳定。全方位保护功能包括过流保护(OCP)和过温关断保护。MP2315 最大限度地减少了现有标准外部元器件的使用,采用节省空间的8-pin TSOT23 封装。 二、基本特性 宽工作输入电压范围:4.5V 至 24V 3A 负载电流 内置90mΩ/40mΩ低导通电阻功率 MOSFETs 低静
57 0
|
算法 异构计算
m基于FPGA的带相位偏差64QAM调制信号相位估计和补偿算法verilog实现,包含testbench
m基于FPGA的带相位偏差64QAM调制信号相位估计和补偿算法verilog实现,包含testbench
284 0