算法理论——哈希表(附多例题)

简介: 哈希表也叫散列表,哈希表是一种数据结构,它提供了快速的插入操作和查找操作,无论哈希表总中有多少条数据,插入和查找的时间复杂度都是为O(1),因为哈希表的查找速度非常快,所以在很多程序中都有使用哈希表,例如拼音检查器。

一、什么是哈希表

哈希表也叫散列表,哈希表是一种数据结构,它提供了快速的插入操作和查找操作,无论哈希表总中有多少条数据,插入和查找的时间复杂度都是为O(1),因为哈希表的查找速度非常快,所以在很多程序中都有使用哈希表,例如拼音检查器。

哈希表也有自己的缺点,哈希表是基于数组的,我们知道数组创建后扩容成本比较高,所以当哈希表被填满时,性能下降的比较严重。

哈希表采用的是一种转换思想,其中一个中要的概念是如何将「键」或者「关键字」转换成数组下标?在哈希表中,这个过程有哈希函数来完成,但是并不是每个「键」或者「关键字」都需要通过哈希函数来将其转换成数组下标,有些「键」或者「关键字」可以直接作为数组的下标。我们先来通过一个例子来理解这句话。

我们上学的时候,大家都会有一个学号「1-n号」中的一个号码,如果我们用哈希表来存放班级里面学生信息的话,我们利用学号作为「键」或者「关键字」,这个「键」或者「关键字」就可以直接作为数据的下标,不需要通过哈希函数进行转化。如果我们需要安装学生姓名作为「键」或者「关键字」,这时候我们就需要哈希函数来帮我们转换成数组的下标。

总之,哈希表是一个便于记录和高效查询的数据结构,插入和查找的时间复杂度都是为O(1), 使用时可以粗略的认为哈希表记录的键是问题的条件,值是问题的解,通过不断插入和搜索最终获得所需答案。

二、哈希表解题实例

1. 两数之和

题目描述

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

思路

暴力思路是最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。

当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。

但是这种思路时间复杂度太高,我们使用哈希表法解决本题:

注意到暴力方法的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。

使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N)降低到 O(1)。

这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。

代码

# 两数之和
def twoSum(nums, target):
    h = dict()
    for i in range(len(nums)):
        if target - nums[i] in h:
            return [i, h[target - nums[i]]]
        else:
            h[nums[i]] = i

2. 整数转罗马字母

题目描述:

罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。

字符 数值

I 1

V 5

X 10

L 50

C 100

D 500

M 1000

例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。

通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:

I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。

X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。

C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。

给你一个整数,将其转为罗马数字。

思路

首先建立题目中已经给定的数值与罗马字符对应的哈希表,然后再此表中根据规律找到解。

我们用来确定罗马数字的规则是:对于罗马数字从左到右的每一位,选择尽可能大的符号值。对于 140,最大可以选择的符号值为 C=100。接下来,对于剩余的数字 40,最大可以选择的符号值为 XL=40。因此,140 的对应的罗马数字为C+XL=CXL。

代码

def intToRoman(num):
    # 构建相应哈希表
    h = dict()
    h[1] = 'I'
    h[5] = 'V'
    h[10] = 'X'
    h[50] = 'L'
    h[100] = 'C'
    h[1000] = 'M'
    h[500] = 'D'
    h[4] = 'IV'
    h[9] = 'IX'
    h[40] = 'XL'
    h[90] = 'XC'
    h[400] = 'CD'
    h[900] = 'CM'
    if num in h.keys():
        return h[num]
    # 答案
    res = ''
    # 模拟,在哈希表中找到最大值,num减去最大值,结果res加上哈希表中最大值对应的字符
    while num != 0:
        for i in sorted(h, reverse=True):
            if num >= i:
                num -= i
                res += h[i]
                break
    return res

3.二倍数对数组

题目描述

给定一个长度为偶数的整数数组 arr,只有对 arr 进行重组后可以满足 “对于每个 0 <= i < len(arr) / 2,都有 arr[2 * i + 1] = 2 * arr[2 * i]” 时,返回 true;否则,返回 false。

示例

输入:arr = [3,1,3,6]
输出:false
输入:arr = [4,-2,2,-4]
输出:true
解释:可以用 [-2,-4] 和 [2,4] 这两组组成 [-2,-4,2,4] 或是 [2,4,-2,-4]

思路

哈希表中按小到大排列记录出现个数,遍历哈希表,每个数都和它的两倍的个数或者它的一半的个数相等,当前个数小于0说明不够用,不能组合,如果不存在当前数的两倍或一半也不能组合,否则当前数的两倍或一半的数减去当前数的个数。

代码

# 二倍数对数组 哈希表的应用
def canReorderDoubled(arr):
    ant = Counter(arr)
    if ant[0] % 2 != 0:
        return False
    for i in sorted(ant, key=abs):
        if ant[2 * i] < ant[i]:
            return False
        else:
            ant[2 * i] -= ant[i]
            print(ant)
    return True
目录
相关文章
|
4月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
107 2
|
6月前
|
存储 算法 数据处理
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
|
8月前
|
存储 算法 安全
探究‘公司禁用 U 盘’背后的哈希表算法与 Java 实现
在数字化办公时代,信息安全至关重要。许多公司采取“禁用U盘”策略,利用哈希表算法高效管理外接设备的接入权限。哈希表通过哈希函数将设备标识映射到数组索引,快速判断U盘是否授权。例如,公司预先将允许的U盘标识存入哈希表,新设备接入时迅速验证,未授权则禁止传输并报警。这有效防止恶意软件和数据泄露,保障企业信息安全。 代码示例展示了如何用Java实现简单的哈希表,模拟公司U盘管控场景。哈希表不仅用于设备管理,还在文件索引、用户权限等多方面助力信息安全防线的构建,为企业数字化进程保驾护航。
|
5月前
|
存储 监控 算法
员工行为监控软件中的 Go 语言哈希表算法:理论、实现与分析
当代企业管理体系中,员工行为监控软件已逐步成为维护企业信息安全、提升工作效能的关键工具。这类软件能够实时记录员工操作行为,为企业管理者提供数据驱动的决策依据。其核心支撑技术在于数据结构与算法的精妙运用。本文聚焦于 Go 语言中的哈希表算法,深入探究其在员工行为监控软件中的应用逻辑与实现机制。
146 14
|
5月前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
152 7
|
11月前
|
算法 Java 数据库
数据结构与算法学习十五:哈希表
这篇文章详细介绍了哈希表的概念、应用实例、实现思路,并提供了使用Java实现的哈希表代码。
194 0
数据结构与算法学习十五:哈希表
|
5月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
117 4
|
5月前
|
存储 监控 算法
单位电脑监控软件中 PHP 哈希表算法的深度剖析与理论探究
数字化办公的时代背景下,单位电脑监控软件已成为企业维护信息安全、提升工作效率的关键工具。此类软件可全面监测员工的电脑操作行为,收集海量数据,故而高效管理和处理这些数据显得尤为重要。数据结构与算法在此过程中发挥着核心作用。本文将聚焦于哈希表这一在单位电脑监控软件中广泛应用的数据结构,并通过 PHP 语言实现相关功能,为优化单位电脑监控软件提供技术支持。
93 3
|
5月前
|
存储 监控 算法
论内网电脑监控软件中 PHP 哈希表算法的深度剖析与探究
当代企业网络管理体系中,内网电脑监控软件占据着关键地位。其功能涵盖对员工电脑操作行为的实时监测,以此维护企业信息安全,同时助力企业优化网络资源配置,提升整体工作效能。在构建内网电脑监控软件的诸多技术中,数据结构与算法构成了核心支撑体系。本文聚焦于哈希表这一重要数据结构,深入剖析其在 PHP 语言环境下,如何为内网电脑监控软件的高效运作提供助力,并通过详实的代码示例予以阐释。
87 3
|
6月前
|
存储 监控 算法
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
92 3

热门文章

最新文章