EfficientNet 训练自己的分类数据集

简介: EfficientNet 训练自己的分类数据集

1、下载代码


Levigty/EfficientNet-Pytorch 可快速使用。(这里顺便提一下EfficientNet的pytorch版官方代码)


2、准备数据集


格式如下:


去.png


3、下载预训练模型


可复制链接至迅雷下载更快https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth


下载完成之后放在eff_weights文件夹下,目录结构如下:

去.png



4、训练完整代码efficientnet_sample.py.更改一些训练参数即可,这里我遇到一个错误ForkingPickler(file, protocol).dump(obj) BrokenPipeError: [Errno 32] Broken pipe,将训练代码放进if __name__ == '__main__':就可以了!!!

from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import datasets, models, transforms
import time
import os
from efficientnet.model import EfficientNet
# some parameters
use_gpu = torch.cuda.is_available()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
data_dir = 'OxFlower17'
batch_size = 2
lr = 0.01
momentum = 0.9
num_epochs = 60
input_size = 224
class_num = 17
net_name = 'efficientnet-b0'
def loaddata(data_dir, batch_size, set_name, shuffle):
    data_transforms = {
        'train': transforms.Compose([
            transforms.Resize(input_size),
            transforms.CenterCrop(input_size),
            transforms.RandomAffine(degrees=0, translate=(0.05, 0.05)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
        'test': transforms.Compose([
            transforms.Resize(input_size),
            transforms.CenterCrop(input_size),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }
    image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in [set_name]}
    # num_workers=0 if CPU else =1
    dataset_loaders = {x: torch.utils.data.DataLoader(image_datasets[x],
                                                      batch_size=batch_size,
                                                      shuffle=shuffle, num_workers=1) for x in [set_name]}
    data_set_sizes = len(image_datasets[set_name])
    return dataset_loaders, data_set_sizes
def train_model(model_ft, criterion, optimizer, lr_scheduler, num_epochs=50):
    train_loss = []
    since = time.time()
    best_model_wts = model_ft.state_dict()
    best_acc = 0.0
    model_ft.train(True)
    for epoch in range(num_epochs):
        dset_loaders, dset_sizes = loaddata(data_dir=data_dir, batch_size=batch_size, set_name='train', shuffle=True)
        print('Data Size', dset_sizes)
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)
        optimizer = lr_scheduler(optimizer, epoch)
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for data in dset_loaders['train']:
            inputs, labels = data
            labels = torch.squeeze(labels.type(torch.LongTensor))
            if use_gpu:
                inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
            else:
                inputs, labels = Variable(inputs), Variable(labels)
            outputs = model_ft(inputs)
            loss = criterion(outputs, labels)
            _, preds = torch.max(outputs.data, 1)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            count += 1
            if count % 30 == 0 or outputs.size()[0] < batch_size:
                print('Epoch:{}: loss:{:.3f}'.format(epoch, loss.item()))
                train_loss.append(loss.item())
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
        epoch_loss = running_loss / dset_sizes
        epoch_acc = running_corrects.double() / dset_sizes
        print('Loss: {:.4f} Acc: {:.4f}'.format(
            epoch_loss, epoch_acc))
        if epoch_acc > best_acc:
            best_acc = epoch_acc
            best_model_wts = model_ft.state_dict()
        if epoch_acc > 0.999:
            break
    # save best model
    save_dir = data_dir + '/model'
    model_ft.load_state_dict(best_model_wts)
    model_out_path = save_dir + "/" + net_name + 'pth'
    torch.save(model_ft, model_out_path)
    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    return train_loss, best_model_wts
def test_model(model, criterion):
    model.eval()
    running_loss = 0.0
    running_corrects = 0
    cont = 0
    outPre = []
    outLabel = []
    dset_loaders, dset_sizes = loaddata(data_dir=data_dir, batch_size=16, set_name='test', shuffle=False)
    for data in dset_loaders['test']:
        inputs, labels = data
        labels = torch.squeeze(labels.type(torch.LongTensor))
        inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
        outputs = model(inputs)
        _, preds = torch.max(outputs.data, 1)
        loss = criterion(outputs, labels)
        if cont == 0:
            outPre = outputs.data.cpu()
            outLabel = labels.data.cpu()
        else:
            outPre = torch.cat((outPre, outputs.data.cpu()), 0)
            outLabel = torch.cat((outLabel, labels.data.cpu()), 0)
        running_loss += loss.item() * inputs.size(0)
        running_corrects += torch.sum(preds == labels.data)
        cont += 1
    print('Loss: {:.4f} Acc: {:.4f}'.format(running_loss / dset_sizes,
                                            running_corrects.double() / dset_sizes))
def exp_lr_scheduler(optimizer, epoch, init_lr=0.01, lr_decay_epoch=10):
    """Decay learning rate by a f#            model_out_path ="./model/W_epoch_{}.pth".format(epoch)
#            torch.save(model_W, model_out_path) actor of 0.1 every lr_decay_epoch epochs."""
    lr = init_lr * (0.8**(epoch // lr_decay_epoch))
    print('LR is set to {}'.format(lr))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr
    return optimizer
if __name__ == '__main__':
    # train
    pth_map = {
        'efficientnet-b0': 'efficientnet-b0-355c32eb.pth',
        'efficientnet-b1': 'efficientnet-b1-f1951068.pth',
        'efficientnet-b2': 'efficientnet-b2-8bb594d6.pth',
        'efficientnet-b3': 'efficientnet-b3-5fb5a3c3.pth',
        'efficientnet-b4': 'efficientnet-b4-6ed6700e.pth',
        'efficientnet-b5': 'efficientnet-b5-b6417697.pth',
        'efficientnet-b6': 'efficientnet-b6-c76e70fd.pth',
        'efficientnet-b7': 'efficientnet-b7-dcc49843.pth',
    }
    # 自动下载到本地预训练
    # model_ft = EfficientNet.from_pretrained('efficientnet-b0')
    # 离线加载预训练,需要事先下载好
    model_ft = EfficientNet.from_name(net_name)
    net_weight = 'eff_weights/' + pth_map[net_name]
    state_dict = torch.load(net_weight)
    model_ft.load_state_dict(state_dict)
    # 修改全连接层
    num_ftrs = model_ft._fc.in_features
    model_ft._fc = nn.Linear(num_ftrs, class_num)
    criterion = nn.CrossEntropyLoss()
    if use_gpu:
        model_ft = model_ft.cuda()
        criterion = criterion.cuda()
    optimizer = optim.SGD((model_ft.parameters()), lr=lr,
                          momentum=momentum, weight_decay=0.0004)
    train_loss, best_model_wts = train_model(model_ft, criterion, optimizer, exp_lr_scheduler, num_epochs=num_epochs)
    # test
    print('-' * 10)
    print('Test Accuracy:')
    model_ft.load_state_dict(best_model_wts)
    criterion = nn.CrossEntropyLoss().cuda()
    test_model(model_ft, criterion)


训练过程中报错:IndexError: dimension specified as 0 but tensor has no dimensions


网上说将batch_size改大,将原先的batch_size=2改成了batch_size=4就可了!


5、这位大大:乱觉先森写的测试代码也很明白,点赞!


EfficientNet利用训练好的模型测试


EfficientNet测试单张图片


 


相关文章
|
5月前
|
机器学习/深度学习
DNN模型训练
【8月更文挑战第9天】DNN模型训练。
38 1
|
XML 数据挖掘 数据格式
|
7月前
|
存储 算法
预训练特征分类器
【6月更文挑战第11天】
41 1
|
网络安全 开发工具 网络架构
YOLOV7详细解读(四)训练自己的数据集
YOLOV7详细解读(四)训练自己的数据集
812 0
|
机器学习/深度学习 人工智能 算法
【Pytorch神经网络理论篇】 31 图片分类模型:ResNet模型+DenseNet模型+EffcientNet模型
在深度学习领域中,模型越深意味着拟合能力越强,出现过拟合问题是正常的,训练误差越来越大却是不正常的。
405 0
|
机器学习/深度学习 人工智能 PyTorch
【Pytorch神经网络理论篇】 30 图片分类模型:Inception模型
原始的Inception模型采用多分支结构(见图1-1),它将1×1卷积、3×3卷积最大池化堆叠在一起。这种结构既可以增加网络的宽度,又可以增强网络对不同尺寸的适应性。
428 0
|
XML 编解码 PyTorch
|
机器学习/深度学习 数据可视化 算法
基于cifar10数据集CNN卷积网络的实现
基于cifar10数据集CNN卷积网络的实现
313 0
|
XML 数据格式 计算机视觉
|
机器学习/深度学习 PyTorch 算法框架/工具
【15】宝可梦数据集基于迁移学习训练
【15】宝可梦数据集基于迁移学习训练
272 0
【15】宝可梦数据集基于迁移学习训练

热门文章

最新文章