Python如何生成随机数——random随机数模块的应用

简介: 在python中用于生成随机数的模块是random,在使用前需要import。

1、随机生成0-1的浮点数random.random

random.random()用于生成一个0到1的随机浮点数: 0 <= n < 1

import random
# 生成第一个随机数
print ("random 1 : ", random.random())
# 生成第二个随机数
print ("random 2 : ", random.random())

结果

random 1 : 0.3558774735558118

random 2 : 0.46006891154492147

2、随机生成指定范围内的浮点数random.uniform

random.uniform的函数原型为:random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限。如果a > b,则生成的随机数n: b <= n <= a。如果 a <b, 则 a <= n <= b。

import random
print (random.uniform(1, 10))  
print (random.uniform(10, 1))

结果

2.1520386126536115

3.1391272747538731

3、随机生成指定范围整数random.randint

random.randint()的函数原型为:random.randint(a, b),用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,生成的随机数n: a <= n <= b,

注意: 下限必须小于上限

import random
print (random.randint(11, 20))  #生成的随机数n: 11 <= n <= 20  
print (random.randint(20, 20))  #结果永远是20

结果

11

20

4、随机从给定集合中生成数random.randrange

random.randrange的函数原型为:random.randrange([start], stop[, step]),从指定范围内,按指定基数递增的集合中 获取一个随机数。如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, … 96, 98]序列中获取一个随机数。random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2) 等效。

import random
print (random.randrange(10, 18, 2))

结果

14

5、从序列中获取一个随机元素random.choice

random.choice从序列中获取一个随机元素。其函数原型为:random.choice(sequence)。参数sequence表示一个有序类型。这里要说明 一下:sequence在python不是一种特定的类型,而是泛指一系列的类型。list, tuple, 字符串都属于sequence。有关sequence可以查看python手册数据模型这一章

import random
print (random.choice("Pythontab.com"))
print (random.choice(["python", "tab", "com"]))
print (random.choice(("python", "tab", "com")))

结果

t

python

tab

6、随机打乱给定序列的顺序random.shuffle

random.shuffle的函数原型为:random.shuffle(x[, random]),用于将一个列表中的元素打乱。如:

import random
list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
random.shuffle(list)
print (list)

结果:

[4, 1, 9, 3, 2, 7, 10, 6, 8, 5]

7、随机获取序列中多个元素random.sample

random.sample的函数原型为:random.sample(sequence, k),从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列。

import random
list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]  
slice = random.sample(list, 5)  #从list中随机获取5个元素,作为一个片断返回  
print (slice) 
print (list) #原有序列不会改变。

结果:

[8, 2, 6, 7, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

随机数常用函数大全

import random
import string
# 随机整数:
print random.randint(1,50)
# 随机选取0到100间的偶数:
print random.randrange(0, 101, 2)
# 随机浮点数:
print random.random()
print random.uniform(1, 10)
# 随机字符:
print random.choice('abcdefghijklmnopqrstuvwxyz!@#$%^&*()')
# 多个字符中生成指定数量的随机字符:
print random.sample('zyxwvutsrqponmlkjihgfedcba',5)
# 从a-zA-Z0-9生成指定数量的随机字符:
ran_str = ''.join(random.sample(string.ascii_letters + string.digits, 8))
print ran_str
# 多个字符中选取指定数量的字符组成新字符串:
print ''.join(random.sample(['z','y','x','w','v','u','t','s','r','q','p','o','n','m','l','k','j','i','h','g','f','e','d','c','b','a'], 5))
# 随机选取字符串:
print random.choice(['剪刀', '石头', '布'])
# 打乱排序
items = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
print random.shuffle(items)
目录
相关文章
|
11天前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
57 0
|
1月前
|
数据采集 监控 Java
Python 函数式编程的执行效率:实际应用中的权衡
Python 函数式编程的执行效率:实际应用中的权衡
201 102
|
10天前
|
安全 大数据 程序员
Python operator模块的methodcaller:一行代码搞定对象方法调用的黑科技
`operator.methodcaller`是Python中处理对象方法调用的高效工具,替代冗长Lambda,提升代码可读性与性能。适用于数据过滤、排序、转换等场景,支持参数传递与链式调用,是函数式编程的隐藏利器。
49 4
|
12天前
|
机器学习/深度学习 算法 安全
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
|
20天前
|
算法 安全 数据安全/隐私保护
Python随机数函数全解析:5个核心工具的实战指南
Python的random模块不仅包含基础的随机数生成函数,还提供了如randint()、choice()、shuffle()和sample()等实用工具,适用于游戏开发、密码学、统计模拟等多个领域。本文深入解析这些函数的用法、底层原理及最佳实践,帮助开发者高效利用随机数,提升代码质量与安全性。
98 0
|
27天前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
89 0
|
1月前
|
数据采集 存储 数据可视化
Python网络爬虫在环境保护中的应用:污染源监测数据抓取与分析
在环保领域,数据是决策基础,但分散在多个平台,获取困难。Python网络爬虫技术灵活高效,可自动化抓取空气质量、水质、污染源等数据,实现多平台整合、实时更新、结构化存储与异常预警。本文详解爬虫实战应用,涵盖技术选型、代码实现、反爬策略与数据分析,助力环保数据高效利用。
107 0
|
1月前
|
存储 程序员 数据处理
Python列表基础操作全解析:从创建到灵活应用
本文深入浅出地讲解了Python列表的各类操作,从创建、增删改查到遍历与性能优化,内容详实且贴近实战,适合初学者快速掌握这一核心数据结构。
173 0
|
1月前
|
中间件 机器人 API
Python多态实战:从基础到高阶的“魔法”应用指南
Python多态机制通过“鸭子类型”实现灵活接口,使不同对象统一调用同一方法,自动执行各自行为。它简化代码逻辑、提升扩展性,适用于数据处理、策略切换、接口适配等场景。掌握多态思维,能有效减少冗余判断,使程序更优雅、易维护。
116 0
|
1月前
|
存储 安全 数据处理
Python 内置模块 collections 详解
`collections` 是 Python 内置模块,提供多种高效数据类型,如 `namedtuple`、`deque`、`Counter` 等,帮助开发者优化数据处理流程,提升代码可读性与性能,适用于复杂数据结构管理与高效操作场景。
102 0

推荐镜像

更多