开发者学堂课程【如何利用飞天AI解决方案帮助升级异构计算的AI架构:什么是基于异构计算的AI架构】学习笔记,与课程紧密联系,让用户快速学习知识。
课程地址:https://developer.aliyun.com/learning/course/648/detail/10746
什么是基于异构计算的 AI 架构
内容介绍:
一、人工智能三要素
二、异构计算满足人工智能算力需求
三、异构计算促进人工智能的发展简史
四、阿里云异构计算为 AI 提供全面算力
五、基于阿里云异构计算的AI应用架构
一、人工智能三要素
人工智能分为三个要素,算法、数据和计算力。如果把人工智能比作一艘冉冉飞起的火箭的话,算法就是它的控制台,能够控制它的方向;数据就是它的燃料,充分的数据可以燃烧;计算力就是它的加速引擎。今天重点分享的是计算力,依托计算,飞天AI的加速如何加速人工智能的引擎。
二、异构计算满足人工智能算力需求
深度学习对计算力的需求呈指数级增长;
异构计算性能增长超越了摩尔定律,满足AI深度学习的发展对算力的需求。
人工智能发展到今天,模型越来越复杂,计算的需求也越来越高,传统的 CPU 无法满足人工智能越来越高的计算的需求,因韦达这种 GPU 为代表的异构计算的性能远远超出了 CPU 的发展能力,异构计算能够满足人工智能的发展对算力的需求。
由图可知,因韦达的 GPU 算力性能的增长速度是远远超过传统的普通 CPU 的增长速度的,所以异构计算会把人工智能推向一个新的高度。
三、异构计算促进人工智能的发展简史
1980年,神经网络算法提出;但是近几十年都没有特别大的突破;在2011年,谷歌用12片 GPU 代替了2000片 CPU,通过深度神经网络算法让机器通过看视频学会了识别猫;在2012年,Alex 和 Hinton 用 GPU 加速的深度神经网络在 ImageNet 图像识别比赛上击败传统算法获得冠军;在2015年,Google 和微软用 GPU 加速的深度神经网络,在 ImageNet 比赛中击败了多项工人辨识度,也就是说,人工智能在这个时候在某些领域已经超越了人类;在2016年,谷歌旗下 Deep Mind 团队研发的机器人AlphaGo 以4比1战胜世界围棋冠军李世石,这是人工智能发展中的一个重要里程碑,训练用了50片 GPU,走棋网络用了174片GPU,以 GPU 为代表的异构计算以火箭引擎的方式推动人工智能火箭的发展。
四、阿里云异构计算为 AI 提供全面算力
有三种不同 GPU 的实例,轻量级 GPU 实例,把 P4和T4的卡做分片,最小能分到1/8的P4和1/8的T4的卡,这种实例比较适合机器学习以及对算力要求不高的深度学习推理;常规虚拟化 GPU 实例,是把整块 GPU 卡作为加速实例提供给用户使用,它包括 GN5i提供两块 P4的卡,GN6i提供4块 T4的卡,GN6v提供8块v100的计算实例,v100之间是通过 NVLink 互联的,
主要适合于做深度学习、强化学习场景包括计算机视觉,图像合成,语音识别,语音合成,自然语言理解,机器翻译,自动驾驶等等;
X-Dragon(神龙)Hypervisor,神龙架构可以通过神龙罗金属的方式把 GPU 的计算能力和 CPU 的计算能力完全没有驯化的方式提供给用户使用,用户使用的是完全没有损失的 GPU 和 CPU,
在 ebmGN6i 的实例上提供了4块 T4的计算卡,在 SCC 的实例上提供了8块 V100的 NVLink 互联的卡,提供了50Gb的 RDMA 互联,在 SCCGN6ne 的实例上,提供了8块32GB 显存的V100,100Gb RDMA 互联。RDMA 的互联能力是要比T4的强很多的,延迟可以降低一个数量级。比较适合大规模深度学习,比如大规模分布式训练、推理以及在线机器学习。算力的要求,对实施性的要求都非常高。
五、基于阿里云异构计算的AI应用架构
在 IaaS 资源层,可以基于阿里云创建出 GPU 云服务器的计算资源以及 TCP、RDMA 网络的网络资源;
用户自己用主流的计算框架层,比如 Tensorflow、PyTorch、MXNET、Caffe 做计算框架;
在应用层,用这些框架搭建视觉服务或者 CTR 服务,自然语言理解或者语音识别的服务。