【8个Python数据清洗代码,拿来即用】

简介: 【8个Python数据清洗代码,拿来即用】

8个Python数据清洗代码,拿来即用


数据清洗小工具箱

在下面的代码片段中,数据清洗代码被封装在了一些函数中,代码的目的十分直观。你可以直接使用这些代码,无#需将它们嵌入到需要进行少量参数修改的函数中。


1. 删除多列数据


def drop_multiple_col(col_names_list, df): 
    '''
    AIM    -> Drop multiple columns based on their column names 
    INPUT  -> List of column names, df
    OUTPUT -> updated df with dropped columns 
    ------
    '''
    df.drop(col_names_list, axis=1, inplace=True)
    return df

有时,并不是所有列的数据都对我们的数据分析工作有用。因此,「df.drop」可以方便地删掉你选定的列。


2. 转换 Dtypes


def change_dtypes(col_int, col_float, df): 
    '''
    AIM    -> Changing dtypes to save memory
    INPUT  -> List of column names (int, float), df
    OUTPUT -> updated df with smaller memory  
    ------
    '''
    df[col_int] = df[col_int].astype('int32')
    df[col_float] = df[col_float].astype('float32')

当我们面对更大的数据集时,我们需要对「dtypes」进行转换,从而节省内存。


3. 将分类变量转换为数值变量


def convert_cat2num(df):
    # Convert categorical variable to numerical variable
    num_encode = {'col_1' : {'YES':1, 'NO':0},
                  'col_2'  : {'WON':1, 'LOSE':0, 'DRAW':0}}  
    df.replace(num_encode, inplace=True)  

有一些机器学习模型要求变量是以数值形式存在的。这时,我们就需要将分类变量转换成数值变量然后再将它们作为模型的输入。对于数据可视化任务来说,我建议大家保留分类变量,从而让可视化结果有更明确的解释,便于理解。


4. 检查缺失的数据


def check_missing_data(df):
    # check for any missing data in the df (display in descending order)
    return df.isnull().sum().sort_values(ascending=False)

如果你想要检查每一列中有多少缺失的数据,这可能是最快的方法。这种方法可以让你更清楚地知道哪些列有更多的缺失数据,帮助你决定接下来在数据清洗和数据分析工作中应该采取怎样的行动。


5. 删除列中的字符串


def remove_col_str(df):
    # remove a portion of string in a dataframe column - col_1
    df['col_1'].replace('\n', '', regex=True, inplace=True)
    # remove all the characters after &# (including &#) for column - col_1
    df['col_1'].replace(' &#.*', '', regex=True, inplace=True)

有时你可能会看到一行新的字符,或在字符串列中看到一些奇怪的符号。你可以很容易地使用 df[‘col_1’].replace 来处理该问题,其中「col_1」是数据帧 df 中的一列。


6. 删除列中的空格


def remove_col_white_space(df):
    # remove white space at the beginning of string 
    df[col] = df[col].str.lstrip()

当数据十分混乱时,很多意想不到的情况都会发生。在字符串的开头有一些空格是很常见的。因此,当你想要删除列中字符串开头的空格时,这种方法很实用。


7. 将两列字符串数据(在一定条件下)拼接起来


def concat_col_str_condition(df):
    # concat 2 columns with strings if the last 3 letters of the first column are 'pil'
    mask = df['col_1'].str.endswith('pil', na=False)
    col_new = df[mask]['col_1'] + df[mask]['col_2']
    col_new.replace('pil', ' ', regex=True, inplace=True)  # replace the 'pil' with emtpy space

当你希望在一定条件下将两列字符串数据组合在一起时,这种方法很有用。例如,你希望当第一列以某些特定的字母结尾时,将第一列和第二列数据拼接在一起。根据你的需要,还可以在拼接工作完成后将结尾的字母删除掉。


8. 转换时间戳(从字符串类型转换为日期「DateTime」格式)


def convert_str_datetime(df): 
    '''
    AIM    -> Convert datetime(String) to datetime(format we want)
    INPUT  -> df
    OUTPUT -> updated df with new datetime format 
    ------
    '''
    df.insert(loc=2, column='timestamp', value=pd.to_datetime(df.transdate, format='%Y-%m-%d %H:%M:%S.%f'))

在处理时间序列数据时,你可能会遇到字符串格式的时间戳列。这意味着我们可能不得不将字符串格式的数据转换为根据我们的需求指定的日期「datetime」格式,以便使用这些数据进行有意义的分析和展示。

相关文章
|
16天前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
17天前
|
API 开发工具 Python
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
|
2月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
87 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
3月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
89 33
|
3月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
61 10
|
3月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
127 8
|
3月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
9天前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
9天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
9天前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。

热门文章

最新文章